LETTERS

Use of Energy: *R. W. Jackson*; *P. K. Hanley*; Ecology: *P. B. Sears*; Linear Algebra Problem: *M. Taitleson*

EDITORIAL

Mass Transfer and Urban Problems: *E. S. Savas*

ARTICLES

Liquid Hydrogen as a Fuel for the Future: *L. W. Jones*
The Sun's Work in a Cornfield: *E. Lemon, D. W. Stewart, R. W. Shawcroft*
Education and Science in North Vietnam: *A. W. Galston and E. Signer*

NEWS AND COMMENT

Magruder in White House: SST Man Plans New Technology Take-Off
Cancer Legislation: Pro-NIH Bill Advances in House
Human Environment Conference: The Rush for Influence
The 1971 Nobel Prize for Medicine or Physiology: *I. H. Pastan*

RESEARCH TOPICS

Global Meteorology (II): Numerical Models of the Atmosphere

BOOK REVIEWS

Science in American Society and Science in America, reviewed by *H. S. Miller*; other reviews by *P. F. Brussard, R. D. O'Brien, B. M. Carlson, W. A. Reynolds*; Books Received

REPORTS

A Model for Plate Tectonic Evolution of Mantle Layers: *W. R. Dickinson and W. C. Luth*
Hyperfine Zeeman Effect Atomic Absorption Spectrometer for Mercury: *T. Hadeishi and R. D. McLaughlin*
Riboflavin Photosensitized Oxidation of 2,4-Dichlorophenol: Assessment of Possible Chlorinated Dioxin Formation: J. R. Plimmer and U. I. Klingebiel

Dopamine: Release from the Brain in vivo by Amantadine: P. F. Von Voigtländer and K. E. Moore

Differences in the Distribution of Catecholamine Varicosities in Cat and Rat Reticular Formation: J. R. Sladek, Jr.

Freezing and Melting of Lipid Bilayers and the Mode of Action of Nonactin, Valinomycin, and Gramicidin: S. Krasne, G. Eisenman, G. Szabo

Morphological Basis for a Mechanical Linkage in Otolithic Receptor Transduction in the Frog: D. E. Hillman and E. R. Lewis

Molecular Structure of Starch-Type Polysaccharides from Hericium ramosum and Hericium coralloidies: D. A. McCracken and J. L. Dodd

Disposition of Morphine in Man: S. Spector and E. S. Vesell

Intestinal Secretion: Stimulation by Peptides: G. O. Barbezat and M. I. Grossman

Inhibition of Normal Growth by Chronic Administration of Δ-9-Tetrahydrocannabinol: F. J. Manning et al.

Growth Effects of Vanadium in the Rat: K. Schwarz and D. B. Milne

Social Behavior of Monkeys Selectively Depleted of Monoamines: D. E. Redmond, Jr., et al.

Operant Conditioning of Specific Patterns of Neural and Muscular Activity: E. E. Fetz and D. V. Finocchio

Application of Science in the Management of National Parks: T. Sudia; Indicators of Environmental Quality: W. A. Thomas; Mineral Elements in the Food Chain: M. A. Farrell

Ciliary tufts which protrude from the sensory surface of vestibular receptor cells are minute mechanical units. The ability of each tuft to deform the surface membrane of its receptor cell indicates a mechanism for transduction (× 7000). See page 416. [D. E. Hillman, University of Iowa; E. R. Lewis, University of California, Berkeley.]
Mass Transfer and Urban Problems

Geophysicists are understandably excited because they have clearly detected continental drift. This finding comes as no surprise to the public official, who has already observed that the island of Jamaica, a huge exporter of bauxite, is gradually drifting—in the form of a unicellular layer of aluminum beer cans—onto the United States and covering us.

Indeed, one way of looking at the problem of the urban environment is from this mass-transfer point of view. An urban society is characterized by the continuing transfer of substantial amounts of matter from remote, uninhabited sites to urban centers. Thus, fuel, ore, and timber, as well as food, are extracted or harvested in distant, rural locations and ultimately transported to urban areas. There, after physical and chemical transformation, they are deposited within the urban environment as solid, liquid, and gaseous wastes, and our cities stagger under the resulting burden of polluted air and water and mounting piles of solid refuse.

Yet, as a matter of public policy, our society perversely encourages and subsidizes this process of mass transfer. We grant generous depletion allowances instead of levying prohibitive depletion penalties. A pound of iron ore is less costly to transport than a pound of iron as scrap, a rate preference enshrined in federally prescribed interstate tariffs. Thus, although recycling presents itself as a way of reducing the overload on our environment, our system discourages recycling and rewards profligate consumption. The required national changes are obvious, but the political will is generally lacking. One hopeful sign is the recent legislation in New York City which discriminates in favor of manufacturers who use recycled material in paper products purchased by the city government.

At the municipal level, a refuse-collection service that is paid for exclusively by real estate taxes offers no incentive to reduce the amount of refuse that is generated; whether one produces a lot of refuse or a little makes no difference, for it is removed “free of charge.” The result, again, is that we encourage indiscriminate production of waste in our “effluent society” at the same time that we are running out of land for waste disposal. To repair this portion of our malfunctioning system, we ought to either impose a disposal tax—collected at the manufacturing source—on all inedible products (with the tax proportional to the difficulty of disposal), or else charge the consumer directly, by the pound, for the waste he nonchalantly bequeaths to his municipality.

The challenge before us is to design and implement the right kind of regulatory feedback mechanisms, through enlightened tax and transport policies, so that we can reduce the rate of depletion of our resources, increase recycling, reduce the amount of material that has to be handled in the cycle, and improve the quality of our urban environment.—E. S. Savas, First Deputy City Administrator, Office of the Mayor, 250 Broadway, New York 10007