LETTERS
Military Research and Development: R. W. Nichols; E. P. Wigner and R.
K. Adair; Stimulating Blood Donation: R. H. Aster; National Register:
W. Hirsch; I. Lyman; Apology to Rhine and Soal: G. R. Price

EDITORIAL
NSF: A Look Ahead: W. D. McElroy

ARTICLES
The Apollo 15 Lunar Samples: A Preliminary Description: Apollo 15
Preliminary Examination Team
Gene Conferring Specific Plant Disease Resistance: K. W. Shepherd and
G. M. E. Mayo
Weight-Watching at the University: The Consequences of Growth:
J. A. Gallant and J. W. Prothero

NEWS AND COMMENT
'73 Budget: Administration Bets on Applied Science
NSF: A Boost for Relevance
Space Shuttle: Compromise Version Still Faces Opposition
Environmental Action Organizations Are Suffering from Money Shortages,
Slump in Public Commitment

RESEARCH TOPICS
X-ray Astronomy: Observations of New Phenomena

BOOK REVIEWS
California Water and The Water Hustlers, reviewed by H. E. Thomas; The
Genetics of Mental Disorders, S. Kessler; Army Ants, C. W. Rettenmeyer;
Cyclic AMP, P. Greengard; 6-Hydroxydopamine and Catecholamine Neurons,
L. S. Van Orden III; Chemotherapy and Drug Resistance in Malaria,
R. D. Powell; Membranes and Ion Transport, A. R. Freeman; Probability
Models and Statistical Methods in Genetics, J. H. Gillespie; Principles
of Chemical Sedimentology, D. D. Runnells; Books Received
Geologic Setting of the Apollo 15 Samples: Apollo Lunar Geology Investigation Team ... 407
Chemistry, Geochemistry, and Petrogenesis of Lunar Sample 15555: B. W. Chappell et al. ... 415
Argon-40-Argon-39 Dating of Apollo Sample 15555: E. C. Alexander, Jr., P. K. Davis, R. S. Lewis 417
Rubidium-Strontium and Potassium-Argon Age of Lunar Sample 15555: V. Rama Murthy et al... 419
Rare Gas Record in the Largest Apollo 15 Rock: K. Marti and B. D. Lightner .. 421
Geochemistry of Apollo 15 Basalt 15555 and Soil 15531: C. C. Schnetzler et al.. 426
Age of a Lunar Anorthosite: L. Hussain, O. A. Schaefer, J. F. Sutter .. 428
Mineralogic and Petrologic Study of Lunar Anorthosite Slide 15415, 18: R. B. Hargraves and L. S. Hollister .. 430
Lunar Anorthosite 15415: Texture, Mineralogy, and Metamorphic History: O. B. James ... 432
Primordial Radioelements and Cosmogenic Radionuclides in Lunar Samples from Apollo 15: G. D. O’Kelley et al... 440
Mars: An Evolving Atmosphere: M. B. McElroy .. 443
Bone Marrow: The Bursa Equivalent in Man?: N. I. Abdou and N. L. Abdou ... 446
l-Leucine: A Neuroactive Substance in Insects: S. Tashiro, E. Taniguchi, M. Eto ... 448
Ethnic Differences in Alcohol Sensitivity: P. H. Wolff .. 449
Long-Term Habituation of a Defensive Withdrawal Reflex in Aplysia: T. J. Carew, H. M. Pinsker, E. R. Kandel 451
Operant Behavior Changes Norepinephrine Metabolism in Rat Brain: A. J. Lewy and L. S. Seldin ... 454
Variations of the Visual Responses of the Superior Colliculus in Relation to Body Roll: S. Bisti, L. Maffeit, M. Piccolino ... 456

Mount Hadley, 12 kilometers north-east of the Apollo 15 landing site. The mountain rises more than 4500 meters above the cratered surface of Palus Putredinis (Marsh of Decay) in the foreground, and is a part of the Apennine Mountain front that forms the eastern margin of the Imbrium basin. See page 407. [Astronaut James B. Irwin, NASA]
NSF: A Look Ahead

One cannot long occupy the director's chair at the National Science Foundation without being struck by the fact that creative science in the United States is in a state of transition. And much of the feedback associated with this fermentation is focused on NSF, which in this country is often equated with creative science and scientists.

Science, as one of man's highest and greatest intellectual achievements, has had a pervasive and protracted influence on man, his way of life, and his environment. And nowhere has its power for change been so dramatic as in the United States. Most scientists hold that the destructive forces let loose by science can be properly focused and wisely used. Accomplishing these ends necessitates a major effort on the part of science and scientists—an effort dedicated to serving all of society and all of man. And while few can agree on the exact details, all concerned believe that science is indispensable for a future in which man is in reasonable harmony with his physical and social environment.

Historically, the National Science Foundation has devoted a large proportion of its resources to the pursuit of disciplinary science—research and science education motivated solely by the intrinsic needs of a discipline or the creative needs of individual scientists. This kind of programming has been highly successful and must continue, for it is the bedrock of all scientific enterprise. However, there must also be a heightened awareness of the requirements placed on all science, and for this reason a significant share of the total resources available to NSF in the future must be devoted to the social and technological needs of the nation. This, however, does not mean that the Foundation should be diverted from its earlier and historical purpose; in fact, this diversification should be construed as a means of strengthening that purpose.

To ensure success, this additional objective must have the cooperation of academic scientists, because a large number of the more creative scientists reside in academic institutions, and also because society and the nation have great need of broadly trained scientists who are highly motivated and capable of pursuing careers associated with the public interest.

To bring the best of science to bear on the social and technological problems of society requires at least three steps. A larger number of the most creative members of the scientific community must be encouraged to associate themselves with the great problems of man and society; for even though not all of the world's ills have a scientific or technological base, the thought patterns of science and its intellectual-material accomplishments are proof that science has much to offer society. The research and training institutions associated with creative science and the mechanisms used to support science must be more clearly focused and receptive to both the immediate and long-term interests of man and society. The National Science Foundation, as one of the most important federal institutions to promote the progress of science, must focus a larger portion of its resources on all of science—not just on academic science.

The social milieu within which the NSF finds itself has changed so markedly and so rapidly that we must not fail to accept the challenges offered by these new and pressing opportunities. We should recognize that, although science is one of the great cultural accomplishments of man, public support on the scale required for man's survival can be justified only as the needs of the larger society are recognized.