LETTERS
Air Quality Standards: A. E. Smith and B. Bloom; Aquatic Ecosystems: J. C. Briggs; T. H. Fraser; J. A. Duke; R. E. Lee; President's Science Message: A. B. Meinel; Cans: E. L. Yochelson

EDITORIAL
Career Education—A New Priority: S. P. Marland

ARTICLES
Time Reversal: R. G. Sachs
Energetics and Pollination Ecology: B. Heinrich and P. H. Raven
Electromyography Comes of Age: J. V. Basmajian
On the Impact of the Computer on Society: J. Weizenbaum

NEWS AND COMMENT
Nonlethal Weapons: Kennedy Prods NSF into Law and Order Territory
Biologics Division to Be Transferred to FDA
Unionization: Scientists, Engineers, Mull Over One Alternative
French University Reorganization: Voila, Thirteen Universities of Paris

BOOK REVIEWS
Zealous Advocates: S. J. Gould
The Evolution of Communication: E. O. Wilson; other review by M. Argyle
A. Paradigm Shift in Psychology: U. Neisser; other reviews by R. K. Lindsay, S. H. Barondes, L. Kaufman
A Central Concept in Anthropology: I. R. Buchler; other reviews by D. W. Fiske, E. van de Walle
A Call for Unity: C. Albritton; other reviews by D. Wolfe, P. Y. Hammond, T. R. Wessel
Polluters and Regulators: R. H. Harris and D. F. Luecke; other reviews by G. D. Brewer, M. Apgar IV
The Universe: Some Facts to Go On: G. B. Field; other reviews by R. S. Shankland, D. Harker, H. Elias
Mammals Presumed Most Useful: C. A. Reed; other reviews by C. H. Southwick, C. E. Oxnard, J. F. Crow, J. S. Farris, J. L. Harper 658

Reef Research: W. A. Newman and T. F. Dana; others reviews by F. R. Fosberg, E. Barham, W. B. White, A. J. Jelinek .. 661

Views of Faraday: B. S. Finn; other reviews by J. M. Briggs, Jr., K. Birr, W. Coleman, J. Stannard .. 665

Books Reviewed in Science: 14 May 1971 through 5 May 1972 696

Books Received ... 704

REPORrs

Lunar Glass: Interferometric Evidence for Low-Temperature Shock: S. Tolansky 671

Genetic Polymorphism of Basic Proteins from Parotid Saliva: E. A. Azen .. 673

Cholesteric Liquid Crystal-Like Structure of the Cuticle of Plusioiris glorios: A. Pace, Jr. .. 678

Decremental Conduction over “Giant” Afferent Processes in an Arthropod: D. H. Paul .. 680

Galactonic Acid in Galactosemia: Identification in the Urine: W. R. Bergren et al. 683

Tongue Cooling during Drinking: A Regulator of Water Intake in Rats: G. Kapatos and R. M. Gold .. 685

Pregnancy Suppression by an Antiserum to the Sperm Specific Lactate Dehydrogenase: E. Goldberg and J. Lerum .. 686

Nucleotide Sequence of a Lysine Transfer Ribonucleic Acid from Bakers’ Yeast: J. T. Madison, S. J. Boguslawski, G. H. Teetor .. 687

Unilateral Increase of Auditory Sensitivity following Early Auditory Exposure: K. R. Henry ... 689

Decay of Information in Short-Term Memory: A. Wingfield and D. L. Byrnes ... 690

Wavelength Effect on Visual Latency: F. S. Weingarten .. 692

COVER

First sheet of patent for the Sperry basic gyrocompass patent (1911). Key: 2, gyro wheel case; 10, cardan ring; 17, phantom; 18, suspension or torsion wire; 21, horizontal pivots; 27, compass card; 28 and 29, gears driven by servomotor (not shown); 31, trolley; 32, contacts; 49, bail; 49b, yielding connection. From Elmer Sperry: Inventor and Engineer, reviewed on page 668.
Career Education—A New Priority

Most of us who read Science have found our careers to be a central and important source of satisfaction and meaning in our lives. But our educational system has not made available to many of our young people the sense of dignity and achievement of a meaningful career.

Too often, young men and women find their work by chance, rather than after an assessment of their own abilities and interests and of the opportunities that are available to them. In a simpler age, young people saw their parents and other adults at work and often worked beside them, developing skills and an understanding of the world of work. But today, our homes and schools are separated from our places of work. Young people have little knowledge of the world of work. Formal education must therefore do a better job of preparing and informing students for the choices they face.

We need, too, greater flexibility about the timing of various phases of our education. Educational opportunity should not be artificially confined to the first third of one's life. It should, instead, be accessible to men and women as they want and need it to allow growth and change throughout their lives.

The key to reform in contemporary American education lies, I believe, in the concept of “career education.” In the primary grades, children should learn more about the world of work and the various roles they might play in it. In the middle grades hands-on experience and practical observation of career areas that are of most interest should be provided. In high school and postsecondary education, children need the opportunity to learn specific skills to lead them to meaningful employment. Further, career education means the opportunity for an individual to return for further formal learning as it is needed and wanted.

Perhaps most immediately we see career education as a new source of motivation in the lives of all young people as they move up the education ladder. The development of career education has been made a Presidential priority, and, in the U.S. Office of Education, I have made it our first priority.

To move career education from the realm of ideas into the world, we are working in several ways simultaneously. The concept itself needs further refinement and debate, and for this we are using both the talents on our own staff in the Department of Health, Education, and Welfare and also enlisting the critical abilities of scholars and practitioners in a number of relevant fields.

At the same time, we are developing a series of models to explore what career education could be like in practice. Six school districts across the country are cooperating in the development and testing of curriculum innovations for career education. These efforts will continue through the next school year. An “employer-based” model is also being designed to test the possibility of basing the education of some young people outside of traditional schools. We are also working on models to bring career education to those who are cut off from the usual institutional sources of education, in homes and in special arrangements for isolated or migrant families. Most of the states are also developing their own programs and centers to begin providing career education for many young people.

The path of change is never smooth or clear. But we believe that the basic concept of career education holds promise for major and needed reform.—SIDNEY P. MARLAND, JR., U.S. Commissioner of Education