The new Reichert OmU3 Ultramicrotome:
exclusive darkfield alignment
permits fast, one-pass positioning.

The new OmU3's unique darkfield alignment system enables the operator to position the knife in one pass, quickly and positively, without damaging specimen or knife. Its simple operation makes technician training easier, saves sectioning time, and greatly reduces the chance for error.

Another exclusive feature is instant start/stop thermal feed. Sectioning can be stopped and a section removed. Without delay or readjustment, sectioning may be resumed at the originally set thickness. Cutting and recycling speeds are controlled independently. Sections can be cut at slow speeds and the knife recycled at a faster speed. The integral Reflexomat water pump allows filling the knife boat remotely to eliminate interruption of serial sections. For a convincing demonstration of the new Reichert OmU3, contact your American Optical representative and send for our new, detailed booklet.

AMERICAN OPTICAL CORPORATION
SCIENTIFIC INSTRUMENT DIVISION • BUFFALO, N.Y. 14215

Through the microscope, the illuminated gap between specimen and knife is seen as a brilliant slit.
J.T. Baker's Catalog 700 lists over 6000 laboratory products for these applications or disciplines

Catalog 700 saves you hours in locating the products you need to do specific jobs. A 72-page Application/Discipline section includes a 23-page classification of products according to analytical methodology; a complete alphabetical section details specifications, containers and prices. If you don't have a copy of Catalog 700 . . . the best source for use-information on day-to-day laboratory products . . . write for your own copy today.

100 Analytical Chemistry
- **110 'Baker Analyzed' Reagents, Acids, and Solvents Including Those Meeting ACS Specifications**
- **120 Reagents and Standards for Determination of Organic Functional Groups**
- **130 Selective and Sensitive Reagents for Metals and Non-Metals**
- **140 Reagents and Standards for Specialized Methods of Analysis**
- **141 Spectroscopy Methods: Atomic Absorption and Flame Emission Photometry, and Emission Spectroscopy**
- **142 Electron Microscopy**
- **143 Solvents for Nuclear Magnetic Resonance**
- **144 Scintillation Counting**
- **145 Solvents for Gas Chromatography and Spectrophotometry**
- **145.1 'Baker Intra-Analyzed' Reagents**
- **145.2 'Baker Analyzed' Reagents, Spectrophotometric Grade**
- **146 Organic Elemental Analysis**
- **147 Solvents for Polymer Characterization**
- **148 Non-Aqueous Acid-Base Titrimetry**
- **150 Products for Laboratory Methods**
- **151 Buffer Substances**
- **152 Chelating Agents**
- **153 Desiccants (Drying Agents)**
- **154 Gases**
- **155 Indicators**
- **155.1 Adsorption Indicators**
- **155.2 Fluorescent, Acid-Base Indicators**
- **155.3 Indicators for Chromometric Titrations**
- **155.4 Acid-Base Indicators**
- **155.5 Redox Indicators**
- **156 Primary and Reference Standards**
- **157 Indicator and Ion Detection Papers**

158 Analytical Concentrates
- **200 Chromatography, Ion Exchange and Electrophoresis**
- **210 TLC Materials**
- **211 Adsorbents and Binders**
- **212 Baker-flex®, Flexible Pre-Coated Sheets**
- **213 TLC Aerosol Sprays and Visualization Reagents**
- **220 Materials for Dry Column Chromatography**
- **230 Column Chromatography and Ion-Exchange Materials**
- **231 Adsorbents for Column Chromatography**
- **232 Ion Exchange Resins**
- **233 Electrophoresis Reagents**
- **240 Gas Chromatography Materials**
- **241 Liquid Stationary Phases**
- **242 Carrier Laboratory Gases and Calibration Mixtures**
- **243 Standards**

300 Organic Chemistry
- **310 Key Reagents and Reactants**
- **320 Key Offerings for Organic Chemists**
- **321 Organo-Phosphorus Compounds**
- **322 Alkanols and Akenols**
- **323 Hydrocarbons, Saturated and Unsaturated**
- **324 Unsubstituted Thiols and Dithiols**
- **325 Unsubstituted Sulphides and Disulphides**
- **326 Quaternary Nitrogen Compounds**
- **327 Deuterated Compounds**
- **328 Products for Vapor Baths**
- **330 Reactants for Instructional Laboratory Courses**
- **340 Specialty Products**
- **341 Photosensitizers—Quenchers for Photochemistry**
- **342 UV Stabilizers**

400 Biochemistry
- **410 Biochemicals Conforming to NAS/NRC Specifications**
- **420 Biochemical Reagents and Reactants**
- **430 Key Biochemicals by Structural Groups**
- **431 Alkaloids**
- **432 Amino Acids and Related Products**
- **433 Carbohydrates and Polysaccharides**
- **434 Enzyme Substrates**
- **435 Fatty Acids and Higher Fatty Acid Esters**
- **436 Flavonoids**
- **437 Peptides**
- **438 Tetrazolium Compounds**
- **439 Other Natural Products**

500 Ultra High Purity Products
- **510 ULTREX® Acids**
- **520 ULTREX Carbohydrates**
- **530 ULTREX Electronic Chemicals**
- **540 ULTREX Inorganic Salts**
- **550 ULTREX Liquid Crystal Chemicals**
- **560 ULTREX Oxides and Metals**
- **570 ULTREX Standards and Reagents**
- **571 Acidimetric Standards**
- **572 Chrometric Standards**
- **573 Clinical Laboratory Standards**
- **574 Microanalytical Reference Standards**
- **575 Analytical Reagents and Solutions**
- **576 Biochemical Reagents**
- **580 ULTREX Organics (Zone Refined and/or Sublimed)**
- **590 ULTREX Organic Liquids**
- **591 Aromatics (Benzene Derivatives)**
- **592 Aicyclics**
- **593 Acyclcs**
- **594 Heterocyclics**
An Emperor's Work

I would like to call attention to the recent biological papers by Emperor Hirohito of Japan, and also to the new books compiled by the Imperial Household in Tokyo. One of the papers, "Additional notes on Clathrozoan wilsoni Spencer" (5 pages in English, 3 pages in Japanese, 4 plates (Biological Laboratory, Imperial Household, Tokyo, 1971)) is a supplement to the Emperor's 1967 publication, "A review of the hydroids of the family Clathrozoidae with description of a new genus and species from Japan" (Letters, 4 Aug. 1967, p. 488). In 1969 the Emperor obtained a small portion of the paratype of C. wilsoni, which was presented to him by the National Museum of Victoria in Melbourne, Australia. In addition, through Mrs. J. F. Watson, he obtained a living colony of the same species, which had been collected at a depth of 40 meters near Cape Woolamai, Victoria. Comparing these specimens with those from Japanese waters, he confirmed their identity. He succeeded in keeping the living specimens in an aquarium and carefully observed their parts: highly extensible and contractile dactylozooids, reduced but detachable medusae, and so forth. The Emperor describes his observations and confirms his original view that the genus should be assigned to the suborder Thecata, in spite of its apparent resemblance to the Athecata.

In a second paper, "Some hydroids of the Amakusa Islands" [32 pages in English, 19 pages in Japanese, 1 plate, 18 figures (Biological Laboratory, Imperial Household, Tokyo, 1969)] the Emperor describes 52 species, including one previously unknown in Japanese waters, and one new variety. All the accounts in the paper reflect the Emperor's painstaking observations of the materials and his careful judgment of the data.

Two fine quarto volumes entitled, respectively, The Sea Shells of Sagami Bay [489 pages in English, 741 pages in Japanese, 105 color plates, 16 black and white plates (Imperial Household, Tokyo, 1971)] and Nova Flora Nasuensis [15 pages in English, 334 pages in Japanese, 184 color figures (Imperial Household, Tokyo, 1972)] are both products of the Emperor's biological labors at his vacation villas at Hayama and Nasu. Sagami Bay is famous for the richness of its fauna. Tokyo University's Misaki Marine Biological Station is located near the tip of a peninsula on the eastern side of the bay. The Hayama vi is about 25 kilometers from Misaki. T Emperor has a collecting boat, for which he obtains materials for his own study, as well as some which he assigns to specialists for identification. T 5000 shell specimens in his collection were studied by T. Kuroda, T. Hal and K. Oyama. The book deals wi 160 families, 683 genera, and 11 species and subspecies, including new genera and subgenera and 11 new species and subspecies. Among these are Mikadotrochus (Pleurotomari beyrichi Hilgendorf, the famous "living fossil"; Thatcheria mirabilis A gas, the curious spiriform shell; and Choristes vitreus Kuroda and Hata which are parasitic on shark egg casuules. The figures, mostly in color, a reproductions of photographs of the specimens collected by the Emperor. Undoubtedly, this book will serve as reference for conchologists and amateurs interested in marine shells, especiially those from the northeast Pacific area.

Novo Flora Nasuensis is a sequel to a smaller book, Flora Nasuensis puished in 1962, and its supplement. Nasu is a highland located about 170 kilometers north of Tokyo where the Emperor has a summer villa. In the book's foreword, the Emperor remarks, "It was about the end of Taisho era (1912-1926) that I first started investigati the plants there, although not in a manner enthusiastic enough, and later work had been interrupted by Wot War II. After all, it was since about 1948 or 1949 that I have been putti myself with active interest into the stud of the wild life at Nasu and its vicinity." Most of the material of the account of the book are derived from the Emperor's own observations, supplmented by the knowledge of botanic experts M. Honda, A. Kimura, S. Kit mura, H. Hara, and T. Sato.

Nasu highland comprises several volcano canic peaks that are 1700 to 1910 meters above sea level. The main peak Chausu, emits much smoke containi sulfur dioxide. The area's vegetatio was severely damaged by a violent eruption in the summer of 1881, but it has gradually recovered. The flora is composed principally of temperate form yet it includes many plants of the alpine and subalpine zones. It also includ both the Northern and Southern element, both the Pacific and Jap Sea elements, as well as some other ones. In the book are listed more th
1600 species of Pteridophyta and Spermatophyta that are found in the Nasu area, with notes on locality, flowering, and fruit-bearing times, most of which are derived from the careful field notes of the Emperor. As far as I know, the vegetation of few localities in Japan, or anywhere else in the world, has been so closely observed and minutely recorded. The many color plates of plants in their natural surroundings and of sceneries in various seasons are excellent, both scientifically and artistically.

Taku Komai
64, Kitasirakawa-Ioriicho, Sakyo-ku, Kyoto, Japan

Space Shuttle Costs

The letter from Ralph E. Lapp on space shuttle costs (3 Mar., p. 392) contains some factual errors and incorrect reasoning which make a difference of an order of magnitude in his estimate of the program cost. Lapp refers to cost data on past manned and unmanned space experiments, but not to the paper which proposes and explains the $100 per pound payload cost estimate for the shuttle (1). The latter estimate is based on 7 years’ experience at the National Aeronautics and Space Administration (NASA) with airborne systems (2) and is modified to take into account the differences between aircraft and the shuttle (the causes of the previous high costs have also been examined to be sure they can be eliminated).

Lapp’s argument is based on “... the extreme assumption that NASA’s payload costs can be slashed to $2000 a pound. ...” He adds $11 to $16 billion in development and operations costs to the resulting $40 billion for 20 million pounds in orbit. He gives no basis or justification for his “extreme assumption,” which is an order of magnitude too high. Further, he reasons that payload construction costs must be brought down to about $100 per pound (a few times “the cost of gold”) to justify more economical transportation systems, but he includes the transportation system and not the payload construction cost in his estimates of payload cost (he divides $11 billion by 20 million pounds). At $100 per pound, 20 million pounds would cost $2 billion, not $40 billion, over a period of 10 years.

Finally, NASA’s claim is not that a payload can be “lifted from earth to orbit” for under $100 per pound, but that construction of a payload for a shuttle sortie mission would cost between $100 and $200 per pound (1). This cost makes it “meaningful to seek cheaper space transportation” (according to Lapp’s own criterion). Detailed studies are currently being made at NASA to document more precisely the payload costs that can be realistically expected for the space shuttle, in the sortie, and also in other operational modes.

Michael Bader
Space Science Division, Ames Research Center, National Aeronautics and Space Administration, Moffett Field, California 94035

Animal Experiments

On 20 January 1971, the Council of Europe adopted Recommendation 621 on the use of live animals for experimental or industrial purposes. The Council of the International Union Against Cancer, at its meeting in Sydney, Australia, on 18 March 1972, unanomously adopted the following resolution in opposition to Recommendation 621.

The Council of the International Union Against Cancer deplores Recommendation 621 (1971) of the Council of Europe because scientists are always searching for the best method of arriving at reliable information without inflicting unnecessary suffering upon animals. The Council of the International Union Against Cancer believes that information provided by animal experimentation is an invaluable resource and loss of this avenue of research would be a very serious setback for the world scientific community. Furthermore, scientific achievement and the quality of training of medical and scientific personnel resulting from a judicious utilization of animals will be jeopardized should Recommendation 621 be implemented.

In consequence, the Council of the International Union Against Cancer urges its member organizations in each country holding membership of the Council of Europe to inform their government of the objectionable consequences of the application of Recommendation 621 (1971).

W. U. Gardner
International Union Against Cancer, 333 Cedar Street, New Haven, Connecticut 06510

References
SUMMER PASTIME
FOR ACTIVE CHILDREN

The how and why of science is always stimulating to the inquiring minds of children, and THINGS of science is just the “thing” to help satisfy this curiosity and search for knowledge. THINGS of science kits contain an explanatory booklet and simple materials for easy-to-do experiments that make science a “fun activity.”

The kits are designed for young people from 10 to 16, but many parents buy them for interested younger children. They are ideal for an afternoon project, scout meetings, neighborhood clubs and playground activities.

Illustrated on this page are THINGS of science kits, normally obtained on a subscription basis, now being offered as a summer special at $1.00 each or three for $2.50 while the supply lasts.

THINGS of science, Dept. SC1
1719 N Street, N.W.
Washington, D. C. 20036

Please send the THINGS of science kit(s) I have checked. My payment in the amount of $......... is enclosed.

NAME
ADDRESS
CITY
STATE ZIP

☐ Measurement
☐ Liquid Crystals
☐ Fossils
☐ Vision
☐ Topology
☐ Center of Gravity
☐ Spectral Color
☐ Hydroponics
☐ Pendulum
☐ Electrostatics
☐ Recycling
A A A S - WESTINGHOUSE
SCIENCE WRITING AWARDS
1972

To encourage and recognize outstanding writing on the natural sciences and their engineering and technological applications (excluding medicine) in newspapers and general circulation magazines.

Three awards of $1,000 each for science writing in newspapers with daily circulation of more than 100,000; in newspapers with daily circulation of less than 100,000 and in general circulation magazines.

Contest year.
Material must have been published within the United States, October 1, 1971 thru September 30, 1972.

Deadline for submitting entries is October 10, 1972. For entry blanks and detailed rules, contact Grayce A. Finger, (Dept. F), American Association for the Advancement of Science, 1515 Massachusetts Ave., N.W., Washington, D.C. 20005.
AIR CONSERVATION
A wealth of information presented by authorities in the fields of conservation, pollution control, pollutants and their effects, law, economics, meteorology, public health, public opinion and government.

OCEANOGRAPHY
Thirty papers presented at the first International Oceanographic Congress. An interdisciplinary reference for those concerned with oceans as a potential food source, the influences of oceans on our weather, and other similar phases of oceanography.

ESTUARIES
Knowledge of estuarine environments has not kept pace with the necessity to resolve problems arising from their intensive use. This is the first comprehensive collection of scientific papers covering the comparatively new field of estuarine research.

GROUND LEVEL CLIMATOLOGY
Twenty papers dealing generally with the theme of weather and agriculture (including forestry), and specifically with the climate closely surrounding plants and animals . . . the microclimate.

AAAS member price applies only when remittance accompanies orders

POSITIONS OPEN

ENZYMOLoGIST— for research in neurochemistry under Department of Psychiatry. Ph.D. in biochemistry with concentration in enzymology.

BIOCHEMIST— with knowledge of protein chemistry. Basic problem in the enzymes which handle drugs in man. Recent Ph.D. or Masters with related experience.

BOTH openings are immediate. Send résumé to: Miss M. Kerans, Personnel Dept., New York University Medical Center, 587 First Avenue, New York, N.Y. 10016.

An Equal Opportunity Employer

virologist immunologist

Due to continued expansion our Biocience Research Laboratory has a position open in the areas of virology and immunology. Duties involve research projects in antiviral drug screening, interferon research and other assignments in immunology. Position is located in St. Paul, Minnesota.

Candidate must possess a Ph.D. in Virology with a strong background in immunology. We prefer up to 3 years in virology and some exposure to immunology. Candidate should be highly motivated and flexible to conduct a wide variety of research projects.

Salary commensurate with experience. Outstanding employee benefits.

For confidential consideration send your résumé to:

Jerrr G. Buegler
Special Recruitment Supervisor
Employment Department
3M COMPANY - 3M CENTER
St. Paul, Minnesota 55101

An Equal Opportunity Employer
A

Abel, E. L. See Marx, G.
Abelson, P. H. (editorials): Changes in Latin America, 1027; Intertwined societ-ies, 461
Acetycholine receptors: number and dis-tribution at neuromuscular junctions in rat diaphragm, D. M. Fambrough and H. C. Hartzell, 189
Adams, B. L. See Zaug, W. S., et al.
Adaptation in retinal rods of axolotl: intracellular recordings, S. R. Grabowski et al., 1240
Adaptive geometry of trees, H. S. Horn, book review by J. L. Harper, 660
Admission policies (letters), R. I. Walter and A. W. Astin, 744
Affinity and matter, T. H. Levere, book review by D. P. Jones, 786
Agassiz, J., Faraday as a natural philoso-phier, book review of, 665
Age changes in the neuronal microenviron-ment, W. Bondaref and R. Narotzky, 1135
Agranoff, B. W. See Neale, J. H., et al.
Aiken, D. E., and E. H. Byard: Histological changes in lobsters (Homarus americanus) exposed to yellow phosphorus, 1434
Air quality standards (letter), A. E. Smith and B. Bloom, 581
Albritton, C.: book review of Science: growth and change, 639
Alfven., H.: Spacecraft propulsion: new methods, 167
Altmann, J. See Nicholson, J. L.
Alvarens, A. A. See Levin, W., et al., 419
American ideology of national science, 1919–1930, The, R. C. Toby, book review by G. H. Daniels, 397
American medicine and the public interest, R. Stevens, book review by C. Rosenbluf, 901
Ames, B. N., et al.: Epoxides of carcinogenic polycyclic hydrocarbons are frame-shift mutagens, 47
Amoss, M. See Vale, W., et al.
Anderson, B. B. See Bross, I. D. J., et al.
ANDERSON, J. R. (Ed.), Chemisorption and reactions on metallic films, book review of, 1116
Andrews, C. E. See Morgan, W. K. C.
Anecdotal evidence (letter), J. W. Vaage, 7
Angiotensin I: metabolism by plasma membrane of lung, J. W. Ryan et al., 644
Animal experiments (letter), W. U. Gardner, 1375
Another crusade! (editorial), I. H. Page, 967
Appgar, M., IV: book review of Planned urban environments, 649
Applied research for the public good—a suggestion, H. Gershinowitz, 380
Aquatic ecosystems (letters), J. C. Briggs et al., 581
Archaeological looting and site destruction (letters), T. J. O’Neill et al., 353
Archaeoecology in the Turkana District, Kenya, L. H. Robbins, 359
Arndrey, R. See Leopold, A. C.
Are the data worth owning? (editorial), J. R. Macdonald, 1377
Argonne’s role (letters), S. D. Freeman and B. I. Spinrad, 7
Arrhenius, E., et al.: Mercury compounds (letters), 1072
Ascent of man, The, D. Pilbeam, book review by C. E. Oxnard, 657
Ascent of sap in trees, R. C. Plumb and W. B. Bridgman, 1129
Astin, A. W. See Walter, R. I.
Akins, C. L., and J. B. Neilands: Leaf in-fections: siderochromes (natural polyhydroxamates) mimic the “green island” effect, 300
Atkinson, A. W., et al.: Dual mechanisms of ion absorption, 694
Atwood, H. L., et al.: Synaptic vesicles: selective depletion in crayfish excitatory and inhibitory axons, 1353
Auditory induction: perceptual synthesis of absent sounds, R. M. Warren et al., 1149
Autosensitization of lymphocytes against thymus reticulocytes, I. R. Cohen and H. Wekerle, 1324
Avioli, L. V. See Birge, S. J., Jr., et al.
Avoidance sessions as aversive events, P. N. Hineline, 430
Axial, D. I. See Raven, P. H.
Axonal transport of tritium-labeled putres-cine in the embryonic visual system of zebrasfish, H. A. Fischer and E. Schma-tolla, 1327
Azen, E. A: Genetic polymorphism of basic proteins from parotid saliva, 673

B

Bachman, D. S. See Rapoport, S. L., et al.
Bacillus, Beyond words, book review of, 1113
Bacteriophage T7, F. W. Studier, 367
Bader, M.: Space shuttle costs (letter), 1375
Baer, H. See Friedlaender, M. H.
Bak, A. F. See Hovey, M. M., et al.
Baker, A. L. See Brook, A. J.
Bannister, T. C. See Grodzka, P. G.
Bardana, E. J., Jr. See Minden, P., et al.
Bar Harbor course in medical genetics, The (meeting report), V. A. McKusick, 820
Barfield, R. J., and L. A. Geyer: Sexual behavior: ultrasonic postcoitalulatory song of the male rat, 1349
Barham, E.: book review of Underwater science, 663
Barker, J. L. See Levitan, H.
— and R. A. Nicoll: Gamma-aminobutyric acid: role in primary afferent depolarization, 1043
INDEX TO VOLUME 176

ture of ethylene di-11-bromodecanoate, 806
Dolay, J. E. See Glass, R. D.
Drachman, D. B., and F. Witke, Trophic regulation of acetylcholine sensitivity of muscle: effect of electrical stimulation, 514
Drake, F. D.: book review of The physics of pulsars, 1230
Drzyfus, H. L., What computers can't do, N. F. Mott and E. A. Davis, book review by H. Fritzsche, 1117
Elliott, D. D.: Controlling the earth's temperatures (letter), 744
Ellis, H., See Favreau, E. O., et al., Emperor's work, An (letter), T. Komai, 1189
Endosperm protein synthesis in maize mutants with increased lysine content, P. S. Misra et al., 1425
Environmental applications of the Weibull distribution function: oil pollution, P. G. Mikolaj, 1015
Epstein, E. (editorial): A blind spot in science, 233
Epstein, H., The origin of the domestic animals of Africa, book review of, 656
Ergotoxins: inhibition of pulmonary tumor growth in rats, S. K. quadrini et al., 417
Essentials of molecular pharmacology, A. KOROLKOVAS, book review by A. J. Jelinek, 665
Environmental applications of the Weibull distribution function: oil pollution, P. G. Mikolaj, 1015
Etzioni, A. (editorial): Who should ultimately own the data?, 121
Etzioni, A. (editorial): Who should ultimately own the data?, 121
Evans, J. V.: The upper atmosphere observatory, 463
Evans, J. W.: Tidal growth increments in the coccil Clinocardiun nuttalli, 416
Evaporation retardation by monolayers, W. W. Mansfield et al., 944
Eye and head turning indicates cerebral lateralization, M. Kinsbourne, 539

F

Fambrough, D. M., and H. C. Hartzel: Acetylcholine receptors: number and distribution at neuromuscular junctions in rat diaphragm, 189