SCIENCE

introduces the 25¢ reprint

A new reprint service:
The opportunity to create your own textbook or reading collection from the pages of *Science*.

Select one or several of the many important articles that have appeared in *Science* since 1966. Order a minimum of 25 copies in any combination (five copies of five articles, 25 copies of one article) and the cost is a quarter per copy. (A collection of 10 reprints will cost the student a modest $2.50.)

Our bestseller list is on the following pages.
Below is a list of suggested titles of reprints. We can supply reprints of these or of any other articles which have appeared in Science during the past six years in minimum quantities of twenty-five copies. Allow six weeks for delivery of reprints not marked with an asterisk. (Numbers in parentheses indicate number of pages for each reprint.)

BIOLOGY AND SOCIAL PROBLEMS

5) A. Crancer, Jr., et al., "Comparison of the Effects of Marihuana and Alcohol on Simulated Driving Performance," 16 May 1969 (4)

8) H. Dishotsky et al., "LSD and Genetic Damage," 30 April 1971 (2)

ENVIRONMENT

11) E. Hollister, "Marihuana in Man: Three Years Later," 2 April 1971 (8)

14) W. McDermott et al., "Health Care Experiment at Many Farms," 7 Jan. 1972 (12)

20) E. Rubin and C. S. Lieber, "Alcoholism, Alcohol, and Drugs," 11 June 1971 (8)

26) G. Zbinden, "Drug Safety: Experimental Programs," 9 May 1969 (4)

31) M. E.ahlin, "Environmental Protection in the City of New York," 13 Nov. 1970 (8)

34) F. K. Hare, "How Should We Treat Environment?," 23 Jan. 1970 (4)

36) T. E. Martin, "Glandular and Genital Responses," 27 Nov. 1970 (8)

37) D. B. Houston, "Ecosystems of National Parks," 14 May 1971 (4)

50) L. White, Jr., "The Historical Roots of Our Ecological Crisis," 10 March 1967 (8)

AAAS Reprints, Dept. RA, 1515 Massachusetts Avenue, NW, Washington, D.C. 20005

Circle number according to listing above. Indicate number of copies on line. Allow six weeks for delivery.

Reprints 25¢ each. Minimum order of 25 reprints (i.e., 25 copies of one title, five copies of five titles, etc.). If you order fewer than a total of 50 reprints your remittance must accompany your order.

<table>
<thead>
<tr>
<th>Number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reprints</td>
<td>14</td>
<td>26</td>
<td>37</td>
<td>48</td>
<td>56</td>
<td>63</td>
<td>71</td>
<td>79</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Reprints</td>
<td>17</td>
<td>30</td>
<td>38</td>
<td>51</td>
<td>57</td>
<td>64</td>
<td>72</td>
<td>82</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>Reprints</td>
<td>19</td>
<td>31</td>
<td>40</td>
<td>52</td>
<td>59</td>
<td>65</td>
<td>73</td>
<td>83</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Reprints</td>
<td>22</td>
<td>34</td>
<td>44</td>
<td>53</td>
<td>60</td>
<td>66</td>
<td>74</td>
<td>84</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Reprints</td>
<td>23</td>
<td>35</td>
<td>45</td>
<td>54</td>
<td>61</td>
<td>67</td>
<td>76</td>
<td>85</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>Reprints</td>
<td>24</td>
<td>36</td>
<td>47</td>
<td>55</td>
<td>62</td>
<td>69</td>
<td>78</td>
<td>88</td>
<td>105</td>
<td></td>
</tr>
</tbody>
</table>

Name

Address

City

State

Zip

1054

SCIENCE, VOL. 177
Rudolf Partsch wanted to repeal Murphy’s Law. Thus, the world’s easiest-to-operate Electron Microscope.

“What I want,” said Rudolf Partsch of Carl Zeiss, Inc. to the designers in Oberkochen, West Germany, “is a totally reliable, extremely easy-to-operate, compact electron microscope with good resolution (7A) in the 0-60,000x range. And I want it at a low price.” He wanted an electron microscope for researchers and teachers interested in electron microscopic studies, not electron microscopes—an instrument designed for everyday use.

The Zeiss EM9S-2 with fully automatic camera system, foolproof airlock, and fingertip controls is what he got. And it looks as though Mr. Partsch really had a keen insight into the needs of a large section of the American scientific community . . . judging both by the reception this instrument has had, and by the numerous attempts to copy it. The copies never catch up, because Partsch keeps in regular contact with users, to find out what kind of modifications can be made to keep abreast of research’s ever-changing requirements. When he finds one, he gets it incorporated post haste into the design. And, what’s more, makes it available for incorporation into previously sold instruments. Because ease-of-modification is a feature inherent in the original uncomplicated design, a Zeiss Electron Microscope never gets old.

For the whole story, contact Partsch. He’ll send you complete specifications and the illustrated brochure “How to Operate the World’s Easiest-to-Operate Electron Microscope.”

You can reach him by phone at: (212) 736-6070.
Or write Carl Zeiss, Inc., 444 5th Ave., New York, N.Y. 10018.
Canada: 45 Valleybrook Drive, Don Mills 405, Ontario.

Ask for leasing and time payment terms.

Nationwide service. Circle No. 11 on Readers’ Service Card.
risk infants who are known to have positive signs of motor dysfunction. Stimulating the walking and placing reflexes of some infants with cerebral palsy might improve their eventual mobility development, although this is only conjecture.

EDWARD EARL GOTTs
Department of Educational Psychology,
University of Indiana,
Bloomington 47401

References

Illingworth correctly notes that extending the infant's head backward produces walking movements at and beyond age 8 weeks. We controlled the posture of the head in both training and testing sessions; the infant's head was tilted slightly forward or held erect voluntarily, but never deliberately extended backward. Moreover, we explored this procedure with three 8-week-old control infants and found it difficult to elicit more than three or four steps in a 1-minute session. Infants in the active-exercise group elicited as many as 43 steps in the same period.

Gotts admonishes that it is the motor scale, not the mental scale, of infant development that is predicated on the assumption of an invariant motor sequence, but he overlooks the relation between the scales; they are not independent. Bayley herself reports "... a substantial positive correlation, usually of the order of .50 to .60, between the Mental and Motor Scales, in approximately the first twelve months of life ..." (1). "Reaches for dangling ring at 3.1 months" is explicitly listed as a motor-related mental item, for example. The direction of the relation is also clear. Bayley explains that, "The development of manipulatory skills, which is seen most clearly in infancy, facilitates the development and employment of the various basic mental processes" (1). The assumption of an invariant motor sequence, therefore, also underlies a substantial portion of the mental scale.

The earlier walking established in our active-exercise group (mean of 10 months), although statistically significant, was within the range of normal development—about 9 to 18 months (2). Yet, Gotts expresses concern about the relation of early walking to accidental injury. We share his concern about childhood accidents but find much of his argument irrelevant to research on newborn walking. It is unreasonably fear-provoking and inaccurate to imply that walking in newborns is related to the "... more than 30 percent of children under 5 years" who "are injured annually. ..." For example, he fails to differentiate the category of "falls" from that of "accidents" in general, which includes mortalities caused by motor vehicles (the most frequent agent nationally for children age 1 to 4), burns, drowning, poisons, and suffocation—the most frequent cause of death under age 1 (3). All falls are not the result of walking; this category also includes falls that occur when infants are crawling on stairs, porches, and furniture. Gotts overlooks one relevant study that specifically examined the role of early motor acquisition in accident- and nonaccident-prone children and found "... no gross differences ..." between the groups (3). Accidents occur most often when children are unsupervised (4), and it seems more likely that the prevention of accidents will come with safer environments and closer supervision than from avoiding early walking.

We explicitly instructed parents to never force their infants to walk, on the belief that forcing any number of responses (eating or toilet training, for example) may be harmful. Infants are well equipped to express their displeasure, so it is noteworthy that, for the majority of experimental infants, standing and walking reliably inhibited, rather than caused, distress.

We tried to remove questions about infant walking from the realm of conjecture and include them in the domain of scientific inquiry. Not only is there no convincing evidence from our research or from other observations that deleterious consequences result from early exercise, but those cases that were followed reveal better-than-average motor performance. We emphasized that there
Just push this button to start your carbon analyzer

If you're using a total carbon analyzer to monitor water pollution, here's a device designed to improve the ease and repeatability of sample delivery. It has a unique micrometer setting device which allows you to easily adjust the volume. Its spring driven plunger delivers the sample at the same semi-automatic injection rate regardless of the operator. An anodized aluminum housing prudently protects the precision-bore glass barrel and makes it almost indestructible. It's available in three models; 20 µl, 50 µl, and 200 µl full scale capacities... the 50 µl capacity was created specially for carbon analyzers. And, each device is actually tested for accuracy. If you need to measure water quality or to deliver GC samples with resetttable precision, try our Push Button Adjustable Syringe. It's described in our catalog... let us send you a copy. Write to Hamilton Company, Post Office Box 7500, Reno, Nevada 89502.
are many uncontrolled factors in follow-up observations, and the following cases do not demonstrate a causal relation.

Our initial pilot baby, who received active exercise of the walking reflex and opportunities for motor activity beyond the first 8 weeks, walked alone at 7½ months of age. He is now 6 years old and in excellent physical and intellectual condition. He has always shown good coordination—maneuvering a marble with a hockey stick at 14 months and riding a two-wheel bicycle with training wheels at 3½ years of age, for example. He combined as many as three words at 11 months and learned to read and write at 4 years of age. His thorough medical examinations have confirmed his sound physical and intellectual development.

 Enough attention has not been given to McGraw’s (5) pioneering research on Jimmy and Johnny, which included active exercise of the walking response during the newborn period and extensive training thereafter. She reported that Johnny performed more stepping actions as an infant than Jimmy or any of the other controls (5). Johnny did not walk sooner but showed “... greater agility and control ...” as an infant (5, p. 86) and “... superior motor coordination ...” at 6 years of age (6). X-rays of Johnny’s legs showed that his skeletal growth at 32 months was normal (5). The boys were followed in the laboratory for 10 years, and no deleterious effects associated with early exercise were uncovered.

We have discovered some parents who on their own initiative have permitted their babies to walk and stand during the newborn period. One such parent reports that her three well-built babies walked alone at 7, 9, and 11 months. She described them as exceptionally independent infants, deliberate in their actions, intelligent, and rarely petty. The children are now in their twenties and in sound health.

In general, Gott’s arguments are more conjectural than substantial, more alarming than accurate. For instance, he notes that children who exhibit reflexes “... past the time of their normal disappearance often have associated developmental complications. ...” Our preliminary observations of active-exercise infants indicate that the Moro, grasp, and rooting reflexes disappear normally. Despite the evidence that walking in the active group at 8 weeks is a learned instrumental response, Gott assumes that exercise preserves the walking reflex. It is unlikely that the newborn was equipped with reflexes simply to be tested in a neurological examination, although they serve that purpose well. It is possible that the Moro, grasping, walking, placing, and rooting reflexes are vestiges of our past and may have assisted the infant in survival—perhaps by helping him attain proximity to his mother (7).

Finally, we want to emphasize that it is not our desire to discourage all parents to walk their newborns, but to encourage more research on newborn walking.

PHILIP R. ZELazo
Department of Social Relations, Harvard University, Cambridge, Massachusetts 02138

NANCY ANN ZELazo
Saint John of God Hospital, Brookline, Massachusetts 02146

SARA KOLB
Department of Nursing, Pima College, Tucson, Arizona 85709

References
6. —, Child Dev. 18, 1 (1939).

Graduate Education

Much credit is due Norman Hackerman (Editorial, 4 Feb., p. 475) for tackling some untested dogmas in American academia. It is high time that a serious examination was made of alternative models for graduate education.

Throughout the past two decades, while additions of graduate programs in the most unlikely places were made with the solemn intonation that graduate work and (even mediocre) research were needed to retain or produce the best undergraduate teachers, I asked deans and presidents for any study or evidence that this was true. I repeat my request in your columns. Dozens of small liberal arts colleges—the Westleys, Oberlins, Kenyons—managed to
provide excellent undergraduate education without attempting to involve the faculty in formal (funded) research activities.

Far from being synergistic, the combination of undergraduate and graduate programs in the same institution are generally destructive to both. The highest values sought, the parameters for success, and the reward structures that would optimize the two subsystems are in many cases, incompatible, especially in smaller institutions. Obviously there are persons who are good at both, and these exceptions (like Pauling) are cited to prove that the faculty member is helped in his undergraduate teaching by his research activity.

It is time to go beyond Hackerman’s call for the study of alternatives to experiments with alternatives. Some 4 years ago, as one of (Pennsylvania) Governor Shafer's science advisers, I suggested that he use part of the large sums going into expanding higher education for the development of all kinds of radically new patterns of education. A detailed model was constructed of semi-autonomous “Graduate Colleges of Interdisciplinary (and mission-oriented) Studies.” Such colleges, affiliated with a major university, would couple research with graduate teaching and public service only. The ethos, goals, and reward structure would be directed to the best possible graduate (and post-doctoral) training. Operating on the philosophical basis that it is equally blessed to teach a graduate as an undergraduate student, we might have a clean text of the costs and quality of graduate education in a system designed for it alone.

The alleged high cost of graduate education results from accounting devices to average costs. Terman (1) has provided data on this point. Given operations of a critical-mass size, selected areas of science, applied science and engineering (including all social science fields), and a reasonably stable federal research picture, zeroth order figures show credit-hour costs near average undergraduate costs (chiefly due to the research subsidy). The tragedy of American graduate education is the total lack of institutional and structural innovation.

Rustum Roy

Materials Research Laboratory, Pennsylvania State University, University Park 16802

References
This is an animal care handbook, a plastic cage catalog, and a cage/animal selector guide.

It is one of the most valuable tools ever created for laboratories using mice, rats, hamsters, guinea pigs, gerbils and dwarf hamsters.

As a cage catalog it lists the most complete line of cages, filters, lids, metabolism units, racks, bottles, sippers, and even bedding, available anywhere.

As an animal care handbook it contains vital environmental and physiological housing and breeding data that is not readily available in any other single source.

As a selector guide it is a new approach to easy selection of the right cage system. Cages, accessories and animals are presented in three different relationships. By type of product, by type of animal, and by the size/number of animals to be housed or bred. Start with any one of the three and you can quickly select all of the components of the cage system that will best fit your program.

Get your copy of this new Catalog/Handbook today. Just ask your Econo-Cage Distributor; or, write Maryland Plastics, Inc., Scientific Division, 9 East 37th Street, New York, N. Y. 10016.
Reichert Automatic Camera: first to give you direct exposure read-out.

The Reichert Automatic Camera is the only automatic camera available with direct exposure read-out. Built-in factor keys allow you to compensate the measured exposure time for film reciprocity failure. Light measurement may be detailed to one small spot or over the entire framed area with the turn of a single knob. Interchangeable film magazines allow quick changing between black/white and color at any time. Film frame size is 24 x 36 mm.

This versatile camera may be used on the Reichert Zetopan or any other microscope in your laboratory for bright field, dark field, polarization or fluorescence. It offers the unmatched quality of Reichert instruments plus the reliability of AO service.

For a convincing demonstration directed to your specific needs write: American Optical Corporation, Reichert Products, Buffalo, New York 14215.