Low-cost ultramicrotomy for electron microscopy depends on being able to choose the right instrument for each particular task. LKB offer a COMPLETE range of ultramicrotomy instruments for you to choose from. The economical LKB-Huxley ultramicrotome allows you to cut good quality sections for electron microscopy at low cost. Its simple and easily-learned controls make it ideal for training as well as research. For ultrathin sectioning of your more difficult specimens, the Universal Ultrotome III gives you a wider range of variable parameters than any other ultramicrotome on the market today.
It's nice to know America leads the world in medical research.

Just don't get sick.

Pick up almost any recent issue of Scientific American, and chances are you'll discover some impressive new advances in the life sciences. The discovery of a powerful family of hormone-like agents called prostaglandins, the mapping of human chromosomes, Nobel prize-winning insights into the causes of cancer . . . or a score of other fascinating achievements.

Our medical and paramedical technologies are leaping forward. Each year, each month, each day there are fewer limits on our abilities to diagnose and cure disease, alleviate suffering and prolong life.

Unfortunately, a tragic gap separates what we can do from what we are doing. As other articles in Scientific American have shown, our health care system, responsible for delivering the blessings of medical technology to the people, is shamefully disorganized, outdated and expensive—resulting in needless pain, physical damage and death.

Three years ago the situation was critical. This year it is intolerable. Next year it will be worse.

The need to do something about it is now recognized in the White House, the Congress and the medical community itself.

In September, an entire issue of Scientific American will be devoted to the growing health care crisis. Many of the articles may surprise you, perhaps even shock you. Like all Scientific American articles, they will bring you facts you won't find anywhere else . . . explain in advance problems that may make headlines months or even years from now . . . and do it all with unparalleled accuracy and objectivity. As usual, all the articles will be written by leading authorities who are directly involved in the issues they are discussing.

Modern health care, of course, is just one of the vital current issues Scientific American covers on a continuing basis. Pick any major subject area from race relations to national defense, from computer technology to the population explosion, and you're likely to find a whole string of articles running back 20 years or more—each a clear, meticulously documented, often prophetic analysis.

For the best, most up-to-date thinking on any important subject, it makes sense to subscribe to Scientific American.

Scientific American makes sense today out of issues that will make headlines tomorrow.

By subscription, $10 for 12 months. Use the attached card, or call toll-free 800-243-6000 (in Conn., 1-800-882-6500).
These Siemens microscopes don’t look the same but they’re made the same way.
teting (whatever happened to rouge and powder!).

The evening's entertainment was provided by a guitar rock band that used electricity instead of fingers, and by painting signs protesting the thermal pollution from the proposed new power facility on the north edge of the lake. (The thermal pollution from such a facility would be about the equivalent of that which my daughters and their friends contribute to the lake getting ready for a night out with their bathing, hair-washing, and clothes-washing.)

With more girls at home there should be an offset in power use. A few more things could be washed in one cycle. However, there is often a last-minute, second cycle of consumption by one of the others of some forgotten unmentionables. I can shower in 3 minutes with a few gallons of water. One of my daughters needs at least 20 minutes and at least 70 gallons of water for a bath or shower or whatever she does up there. I see little hope of retarding the growth of the residential power demand until scientists can apply highly skilled analysis to the female and the particular, unanalyzable, unscientific, uncontrolled phenomena of their power consumption. (I never hear them running the power lawn mower.)

Philosophically and financially I hope the authors are right that the "crisis" has been overestimated, but I hold out no hope whatsoever.

R. H. SHANNON
59 Valecrest Drive, Islington, Ontario, Canada

Frog Health

Science has appropriately alerted its readers to the poor health of frogs available for research (see T. H. Maugh, Research News, 27 Oct. 1972, p. 387) and noted that septicaemia and malnutrition are the predominant causes of death. Gibbs et al. (1) demonstrated how simple treatment with tetracycline and food was sufficient to eliminate these causes of death. Following their suggestion, we have treated frogs received from large midwestern and eastern suppliers by injections of tetracycline [5 percent, weight to volume, in water; 0.5 milliliter per frog (weight, 100 to 150 grams)] via soft polyethylene tubing (PE 90) into the stomach once or twice per day. Ninety percent survival is the routine result. In addition, if investigators refused to pay for frogs received dead, suppliers might investigate simple modes of treatment in the housing ponds to avoid the loss of captured stock.

DAVID S. PAPERMASHER
Department of Pathology, Yale University Medical School, New Haven, Connecticut 06510

EDWARD GRASS
Section of Laboratory Animal Sciences and Department of Pharmacology, Yale University Medical School

References

Latin American Development

In the last year, several Science editorials have dealt with Latin American development. Two of them by Philip Abelson (9 June 1972, p. 1077; and 6 Oct. 1972, p. 13) merit some comment.

As a Latin American, I cannot help noting the widespread misunderstanding of American engineers and scientists about the social, political, economic, and scientific problems of Latin American countries. I do not blame them, but rather find they have great difficulty understanding what underdevelopment really means. As Abelson correctly observes, "If the poorer countries are to develop, they must do so largely by their own efforts." Although in many of these countries the state has played a strategic role in promoting the development of the industrialized sector, internal structural conditions have oriented the production of goods to satisfy the consumption of the middle and upper classes. Moreover, as a new form of economic domination—the multinational corporation—is spreading throughout the world, the planning, decision-making, and financial, scientific, and technological knowledge are located in the industrialized countries (1). The result is a new form of the well-known "center-periphery" model (2), in which manufacturing activities are concentrated in industrial (center) countries, while the peripheral ones specialize in those products needed by the former for their economic expansion.

Abelson suggests "The Latin American countries might try to utilize the bounteous resources of scientists and engineers in developed countries."
although he also notes that there are 50,000 Latin American scientists and engineers not effectively employed in industry. What he probably ignores is that Latin American professionals “have no opportunities to use their knowledge in the established industries and even less chance to exercise their ability to invent, create and use their research qualifications to improve techniques and manufactured products. . . . The designs, the projects and the plans for manufacture of industrial goods in local subsidiaries arise already fashioned from headquarters” (3).

In his editorial of 9 June 1972, Abelson refers to Brazil as an example of rapid economic change in recent years. Brazil is, in fact, an excellent example of a model of growth for the sake of some multinational corporations and for the benefit of a small minority (5 percent) of the population (4). Abelson does not refer to countries like Chile, Peru, and Cuba, which are trying, in spite of all sorts of difficulties, to change the economic and social structure of their societies in order to distribute the benefits of development to the majority.

In most Latin American countries, any attempt to tackle the problem of underdevelopment constitutes a threat to the state of economic dependence under which those countries are being allowed to grow; this sort of “economic growth” is a mischievous fraud. Most Latin American scholars are not even free to discuss in their own countries the problems related to the impact of science and technology on an under-developed society, as the universities which are the place to do so are forbidden to them (5).

Lucia Tosi
Département de Recherche Physique, Université Paris VI, 75005 Paris, France

References

The efforts of Brazil’s Executive Commission for the Economic Re- cuperation of the Cacao Region (CEPLAC) fit the “legitimate aspirations” mentioned in Abelson’s editorial of 6 October 1972. Funded through a 10 percent tax on exported cocoa, CEPLAC is charged with the development of agriculture and the improvement of living standards in Bahia, where cocoa grows.

Logically, first priority goes to increasing the tonnage and quality of the cocoa crop for export through a traditional agricultural research and extension approach, but CEPLAC does not stop there. To get the crop to market, bridges and roads are built where needed, and dock facilities are nearing completion at the port city of Ilheus. CEPLAC is using cocoa money in a program of agricultural diversification aimed at changing the prevailing monoculture. Through CEPLAC, schools have been built and staffed, medicine bought, and rural towns have sewage systems and potable water for the first time. In June 1972, a new research laboratory was dedicated. Located within the CEPLAC compound near Itabuna, this facility ranks as one of the most complete and potentially productive centers devoted to tropical agricultural research.

Abelson comments about the small number of scientists and engineers in Latin America. He suggests that the “bounteous resources” of technical talent in developed countries fill the breach, but that this would require, among other things, “a willingness [by Latin Americans] to provide conditions that would permit effective tackling of problems.” Such conditions prevail at CEPLAC, especially in the case of biological sciences. The forests and fields abound with exciting and intellectually stimulating challenges; and, with the new laboratory nearby, discoveries of great practical importance are now possible.

The Brazilians will eventually make it on their own. But CEPLAC is the type of indigenous organization mentioned in Abelson’s editorial, where an infusion of scientific talent from abroad, in this case on a small scale, could accelerate the development process. CEPLAC is no ragtag outfit. It has forceful and effective leadership and the resources to get the job done.

As a postscript to all overburdened scientists who would like to get away from it all: at Itabuna the mail service is impossible, so there are no letters to answer; telephones work only about as far as you can shout; and the beach—well, it can be all yours, with nothing but sand and more sand, surf, and palm trees as far as the eye can perceive.

P. G. Keeney
Division of Food Science and Industry, Pennsylvania State University, University Park 16802

The Brinkmann Gel Column

Slicing it Pretty Thin
It’s a safe bet you won’t find one in every household. Or in every laboratory. But if you’re moving in the sort of specialized area of electrophoretic analysis of RNA, for example, and you have to serve up slices of polyacrylamide gels, a lot of laboratory types think the MICKLE GEL SLICER is the best thing since delicatessens.

It figures. How else can you cut a frozen gel column up to 10 cm long and 1 cm thick into flawless slices of less than 1.0 mm, in increments of 0.1 mm, and leave the rest of the column undisturbed?

Cutting force and blade angle are adjustable for hard-frozen dilute gels, or softer, concentrated cylinders. Slices are easily collected for processing and scintillation counting.

Twenty cuts per minute. Foot switch leaves hands free. Electromagnetic counter keeps score on slices. Write for complete details.

How To Look Good, Fast.
Costs being what they are today, the guy (or gal) who can save a few dollars gets the hero medal. Here’s a way to look good while you’re looking good and fast (while you’re rapidly scanning polyacrylamide gel columns optically, that is).

Be the first to recommend purchase of the VICON LINEAR GEL SCANNER—the attachment that fits right into your Zeiss PMQ II Spec. cell compartment without modification (and avoids costly instrument duplication).

It scans at 6 mm/min—even faster (25 mm/min) for coarser separations—in either direction. Resolution? Slit aperture is 100 μ thin to catch those narrow bands. Columns to 10 x 100 mm can be handled. Wavelength is variable from 200 to 750 μm. And there are a host of options available to meet your specific needs. Want to scan fast? Want to look good? Get the details. Write:

Dept. B.G.C.
Brinkmann Instruments, Inc.
Cantique Road,
Westbury, N.Y. 11590
(516/334-7500)

Brinkmann Instruments
(Canada), Ltd.
90 Galaxy Boulevard,
Rexdale (Toronto), Ontario
We want to be useful
...and even interesting

A cure for gobbledygook?

The pen or pencil you habitually carry is on your mind only if missing from your pocket and needed. A Kodak pocket Instamatic® camera is no more burdensome. When needed, it captures a record of what has been seen in much more detail, much easier, much faster, much more credibly than the average pen. (Takes magicubes when doing inventories, for example.) Where accurate observing is a professional duty, half a day’s pay thus invested might yield handsome returns in more observation and less verbalization per working year. Higher priced model focuses by rangefinder to 3 feet, covers 50,000:1 in light by CdS exposure sensor. See photo dealer.

Years of training and experience in photography are not required to take pictures like these. Yet they express clearly what the citizenry means by “clean,” “moderately clean,” “moderately littered,” “heavily littered.”

In fact, this particular set of pictures is actually used in the streets of the nation’s capital as a guide to keep track of trends in cleanliness with numbers that say more than the rubbish tonnage picked up or the dollars spent doing so.†

More and more agencies on various levels of government are acquiring quantities of inexpensive Kodak Instamatic® cameras to place in hands that would otherwise be generating mighty torrents of little-understood words in the discharge of important responsibilities.

This does a favor for all. Gobbledygook is as hard to write as it is to read.

†Details are explained in “How Clean Is Our City?” available from Publications Office, The Urban Institute, 2100 M Street, N.W., Washington, D.C. 20037 for $1.95. It doesn’t tell what camera made the pictures and we haven’t asked.
"The eternal mystery of the world is its comprehensibility."

- Einstein

Speaking of Science

To help you understand the world through science, the AAAS—the largest general scientific organization in the United States—has created a series of audiotapes. Designed for listening in the home and the classroom, the 12 half-hour conversations feature 30 of America's leading scientists discussing today's problems. These conversations, narrated by Edward Edelson, science writer for the New York Daily News, and Mitchell Krauss of WNET-TV in New York, will be of interest to the scientist wanting to keep up-to-date in other fields. To the student. To libraries. To the general listener. The audiotape cassettes, for playback on standard cassette machines, are packaged in an attractive vinyl binder.

1. DISCOVERING MARS
 Dr. Carl Sagan

2. EVOLUTION AND THE DESCENT OF MAN
 Dr. Theodosius Dobzhansky, Dr. Ernst Mayr, Dr. Elwyn Simons

3. ADVANCES IN THE BEHAVIORAL SCIENCES
 Dr. Eric Lenneberg, Dr. Ward H. Goodenough, Dr. Lionel Tiger

4. WHAT IS NEEDED FOR PEACE?
 Dr. Chadwick F. Alger, Dr. Richard A. Falk, Dr. George W. Rathjens

5. HEALTH CARE AND DELIVERY
 Dr. Walter J. Lear, Dr. Paul Friedman, Dr. H. Jack Geiger

6. ADVANCES IN THE PHYSICAL AND LIFE SCIENCES
 Dr. Mark Kac, Dr. Charles Price, Dr. Charles P. Leblond

7. ADVANCES IN THE OCEAN SCIENCES
 Mr. E. W. Seabrook Hull, Dr. John L. McHugh

8. PUBLIC UNDERSTANDING OF SCIENCE
 Dr. Margaret Mead, Mr. Peter Hackes, Dr. Paul B. Sears

9. TECHNOLOGY TODAY
 Dr. J. E. Goldman, Dr. J. Herbert Holloman

10. THE FINITE EARTH
 Dr. Athelstan Spilhaus, Dr. Arthur Kantrowitz, Mr. Daniel J. Fennell, Mr. Herman Kahn

11. ADVANCES IN ASTRONOMY
 Dr. Herbert Gursky

12. NOISE AND MUSIC
 Mr. F. Richard Moore, Mr. Paul B. Ostergaard

List price: $39.95
($34.95 for AAAS members).

Please send money order or check payable to AAAS—No cash. Send to Dept. 1

Name ____________________________

Street __________________________

City _______ State _______ Zip _______
ANNOUNCEMENT

DECEMBER MEETINGS
IN
HOUSTON, TEXAS
27-30 DECEMBER 1973

American Microscopical Society
American Society of Zoologists
Animal Behavior Society
Society for the Study of Evolution
Society of Protozoologists

The 1973 annual meetings of the above societies will be held at the Rice Hotel in Houston, Texas. Contributed paper sessions and several symposia are being planned. Society members may present papers, but all interested biologists are invited to register and attend.

MAJOR SYMPOSIUM
Toward a National System of Ecological Preserves—The Genetic, Systematic, and Ecological Basis of Natural Area Preservation

Conference room rates at the Rice Hotel: $11.50 single, $7.50 double, $6.50 triple, and $5.50 quadruple occupancy.

Air transportation: Round-trip group flights at reduced rates are being planned from major cities to Houston.

For further details contact the Program Officer of the appropriate society or the Meeting Manager:

Dr. Rezneat M. Darnell
Department of Oceanography
Texas A&M University
College Station, Texas 77843

Your Lab is
More Efficient with
TIME
CONSECUTIVE
NUMBERING
SYSTEMS

Use to Number:
Test Tubes...
Requisition Forms...
Containers...
Control Lots...

There are many ways a Time Consecutive Numbering System can save you time through increased efficiency. Inexpensive and easy-to-use, Time Consecutive Number Labels are self-sticking — adhere to any surface in temperatures ranging from -70°F. to +250°F. Numbers can be repeated from 1 to 10 times on a choice of seven different color stocks. Available in handy pre-cut tablet or clinically safe BACTERIOSTATIC roll form.

Adaptable to any numbering system you develop, these labels are supplied with a standard "No." prefix or any of 5 other prefixes. Think of the efficient, economical systems you can develop using Time Consecutive Numbers.

Write today for free samples, and more information on Time Consecutive Numbers and other TIME Products for the Laboratory. We will also send the name of your nearest dealer.

NOTE: NEW ADDRESS. We have recently moved into new facilities; enlarged and automated to serve you better.

PROFESSIONAL TAPE COMPANY, INC.
DEPARTMENT 12
144 TOWER DR., BURR RIDGE (HINSDALE), ILL. 60521

Sale!
O-18 Enriched Water
with
Deuterium
Normalized to 0.02 atom % D.
Sale ends April 30, 1973

<table>
<thead>
<tr>
<th>Atom % O-18</th>
<th>Grams</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>25</td>
<td>$450</td>
</tr>
<tr>
<td>20</td>
<td>5</td>
<td>206</td>
</tr>
<tr>
<td>30</td>
<td>2</td>
<td>160</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>120</td>
</tr>
<tr>
<td>50</td>
<td>1</td>
<td>160</td>
</tr>
<tr>
<td>60</td>
<td>1</td>
<td>210</td>
</tr>
<tr>
<td>70</td>
<td>1</td>
<td>275</td>
</tr>
<tr>
<td>80</td>
<td>1</td>
<td>290</td>
</tr>
<tr>
<td>90</td>
<td>0.5</td>
<td>200</td>
</tr>
<tr>
<td>95</td>
<td>0.5</td>
<td>220</td>
</tr>
</tbody>
</table>

Delivery from stock. Ask for other quantities.
Phone (415) 234-4130