Meet the L-5 Preparative Ultracentrifuges
--four superb performers from Beckman

We've taken the best features of our Model L2-65/75B and L3-40/50 preparative ultracentrifuges... added the latest in high-speed drive technology... built in even more operating conveniences and safeguards... to bring you the Model L-5 Series—four advanced instruments from 40,000 to 75,000 rpm that provide whatever you need in the application of high forces to biochemical research.

The L-5's feature rapid acceleration/deceleration, precise speed and temperature control, and the containment capability necessary to run new high energy rotors. They do the large volume work, the delicate density gradient separations, the most advanced continuous-flow and zonal runs.

There are 30 Beckman high-performance rotors to choose from, plus accessories like the new Prep UV Scanner which give a preparative instrument many of the capabilities of an analytical ultracentrifuge.

With Beckman you also get a wealth of applications experience, and prompt service—no matter where you are—from our factory-trained service staff numbering in the hundreds.

Beckman: the confident name in Ultracentrifuges for a quarter century. For the new L-5 Brochure, SB-400, write Beckman Instruments, Inc., Spinco Division, 1117 California Avenue, Palo Alto, Calif. 94304.

Beckman®
INSTRUMENTS, INC.
Gel scanning made easy.

If you're looking for an easy and accurate way to quickly scan acrylamide gel columns, the new Heath/Schlumberger Gel Scanner is the answer. As an accessory for our single-beam UV-visible spectrophotometers, it offers a high performance, low-cost approach to scanning gel separations.

The EU-705-11 Gel Scanning Module easily mounts as part of any Heath/Schlumberger single-beam spectrophotometer system. All systems are linear in absorbance and have 0.001 Absorbance accuracy with 0.1 nm wavelength resolution. Wavelength range is from 200 to 700 nm or 185 to 1000 nm with accessory detectors. The cost of a complete gel scanning spectrophotometer system can be as low as $3945*, including recorder.

The EU-705-11 accepts 5 to 10 mm gels up to 150 mm in length. Two scanning speeds of 5 mm/min and 20 mm/min are provided with a one-to-one relation established between gel scanning speed and chart recorder speed for easy correlation of absorbance with gel position. Scanning apertures of 0.2 mm and 0.05 mm provide excellent resolution. The module can be used for a UV or visible scan in both directions with an automatic shut-off at the end of each scan. Manual override of the scanning system is possible at any time during the scan for specific positioning of the carrier. Gels may be positioned dry on the teflon-coated holder provided or placed in a cuvette. An additional holder is included for scanning of thin negatives. And the price is only $750.*

To find out how easy gel scanning can be, simply circle the reader service number or contact us directly using the coupon below. Also available is the latest Heath/Schlumberger catalog which gives complete descriptions and specifications for all spectrophotometer systems and accessories.
THE NEW CARWORTH CATALOGS
MYTH OR REALITY?

In the course of this newspaper's investigations into the new Carworth guinea pigs, our reporters have also uncovered the fact that Carworth is about to release two new catalogs.

The first of these catalogs presumably deals with Carworth rats and mice and, we suspect, the "secret" guinea pigs, too.

The second catalog seems to cover Carworth's extensive line of laboratory animal care equipment including: animal housing systems, contamination control products like laminar flow devices, bedding, cleaning materials and other accessories and supplies.

We queried the Carworth advertising agency about the existence of these new catalogs and were told by a representative that they know nothing (Editor's Note: an unusual agency admission!), but that if Carworth were to issue new catalogs soon, "they would be likely to be beauties," they stated with characteristic immodesty.

The New City Times can't help but wonder what other surprises these Carworth people have in store for us. In any event, for now we suggest that you write Carworth, New City, (Rockland County), N.Y. 10956 (or call 914/634-8931) and say: "If these new catalogs are not a myth, please send!"

Rats and Mice by the Thousands
THOSE OTHER CARWORTH ANIMALS

Surreptitious investigation of the multiple Carworth facilities indicates that the company's apparent entry into guinea pigs has in no way diminished their activity in—or apparent enthusiasm for—supplying researchers with quality rats and mice.

Carworth mice include the well-known CF 1, CFW, and BALB/c CF inbred strain. The Carworth rats are the widely-used CFN and CFE strains.

CARWORTH INTO GUINEA PIGS
RESEARCH COMMUNITY PLEASED
Surprisingly, Company Says "No Comment"

The New City Times today learned from an unidentified but usually reliable source, that Carworth, a leading supplier of high quality rats and mice since 1935, has expanded its service to the research community by adding guinea pigs to its line.

Calls by this newspaper to a random selection of research people indicate that the guinea pig, always a popular animal for bacteriologic and vitamin C work, is now also being widely used in immunologic, pharmacologic, virologic, and endocrinologic studies of all types.

Thus, it seems obvious to this paper that the entry into this field of a quality house like Carworth provides researchers with a valuable new source for this important laboratory animal.

Our investigative reporters have also uncovered the fact that the Carworth guinea pigs are actually Dunkin/Hartley animals from a closed colony meticulously maintained for over 15 years.

Carworth personnel have routinely responded to our inquiries about this development with enigmatic smiles and "no comment" and will neither affirm nor deny any of the above allegations.

Despite this uncharacteristic reticence, our reporters are firm in their conviction that all researchers interested in Carworth-quality guinea pigs are entitled to know more. The New City Times suggests, therefore, that interested parties demand more data. Write CIA (Carworth Information Agency), c/o Carworth, New City, (Rockland County), New York, 10956 (or call 914/634-8931). They'll get the message.

Rumor also has it that Carworth supplies researchers with surgically-modified mice and rats at prices far below that which can be achieved by the purchaser in his own institution. (Can that be?)

The New City Times has learned that if you write to Carworth, New City, (Rockland County), New York 10956 (or call 914/634-8931) and ask for further information on their rats and mice, you'll get it.

Carworth

Division of Becton, Dickinson Company
New City, New York 10956
Although FLURAM does not react directly with proline and other secondary amino acids, by introducing a simple intermediate step these substances can be converted to primary amines which are detectable with FLURAM.

FLURAM can be used in aqueous solution, in organic solvents and on solids. On thin layer chromatograms it has been used as a spray to detect amino acids and peptides.

Because FLURAM reacts with primary amines to yield highly fluorescent derivatives, it is uniquely suited for both manual and automated microanalysis of many biologically important compounds such as amino acids, peptides, proteins, catecholamines, amino sugars, oxytocin and vasopressin. Other applications of FLURAM currently being explored include peptide sequencing, genetic studies, assay of proteolytic activity of enzymes, monitoring for completeness of coupling reactions in peptide synthesis and labeling of proteins. The enormous range of potential applications for FLURAM should expand knowledge in the field of molecular biology and find eventual value in clinical medicine.
With the HP GC/Mass Spectrometer System you always know what mass you are looking at

We could cite dozens of examples of how easy it is to use the HP GC/Mass Spectrometer/Computer System, even if you've had no previous training in mass spectrometry. But for now, let's just look at mass number identification...not exactly a trifling matter in mass spectrometry.

- When you're using the built-in scope to set up the spectrometer, you find the mass of any peak by turning a crank until a pip appears on top of the peak, then read the mass number directly on the digital display.
- You select the range of a mass scan by setting a pointer to the start mass and one to the stop mass on a single 13-inch long linear scale.
- When you're reading the oscillograph recording of a mass spectrum, it's easy to identify the mass number of any peak because the recording contains two mass marker channels, one at 10 and the other at 100 amu intervals. In this oscillograph record of the mass spectrum of "Mestranol" for example, compare how easily you can identify the molecular ion at mass 310...against how difficult it would be without the mass markers.

- With the computerized data system, you can choose automatic mass number readout at 1.0 or 0.1 amu intervals for all plots and tabulations.
- And regardless of the mode of operation, the mass number is reliable. So reliable that mass calibration of the HP system is required only during routine maintenance periods...compared to at least daily calibration with most other systems.

Remember too that HP builds and warrants the entire system—GC, MS and computer—and provides responsive service on all system components from a nearby office. Call your local office for full information or write for our new brochure.
Worthington Collagenase...

White fat cells, obtained by enzymatic digestion of parametrial adipose tissue as used in study of membrane mediated responses.

specificaly blended for cell isolation.

In microbiological studies of animal cells, it often is desirable to isolate and separate the cells for further study. The researcher's need is to separate the cells from the connective and cementing materials without damaging the cells themselves.

Many researchers found that a natural mixture of digestive enzymes produced by a non-toxigenic strain of the bacterium Clostridium histolyticum provided the separation remarkably well. The enzymes, without the toxin that many of the Clostridia produce, effectively digest away the materials connecting the cells into a tissue, but leave the cells themselves virtually untouched.

The enzyme mixture is named after its more unique member, Collagenase. Worthington supplies Collagenase in several degrees of purity ranging from crude to highly-purified; researchers have generally found that the less purified material is more effective in releasing intact cells from tissues. The effectiveness, however, seemed to differ with different tissues, and it did not always match the quantitative differences noted in our assay labs.

A program was therefore initiated by Worthington aimed at correlating effectiveness of samples on specific tissues with results of our own biochemical assays. We enlisted the support of several dozen prominent researchers; they evaluated more than a hundred samples of regular production and specially prepared lots of Collagenase in their own studies.

Evaluation of these studies has enabled us to categorize our crude Collagenase into four different types which are blended and classified according to the specific tissues for which each is best suited. The four types are available as listed in our current catalog.

<table>
<thead>
<tr>
<th>TYPE</th>
<th>CHARACTERISTIC</th>
<th>TISSUE BEST SUITED</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Normal balance</td>
<td>Fat cells; Adrenal tissue</td>
</tr>
<tr>
<td>II</td>
<td>High Clostridiopeptidase</td>
<td>Liver, Bone, Thyroid</td>
</tr>
<tr>
<td>III</td>
<td>Low Proteases generally</td>
<td>Mammary</td>
</tr>
<tr>
<td>IV</td>
<td>Low Tryptic activity</td>
<td>Pancreatic Islet cells</td>
</tr>
</tbody>
</table>

The increasing use of Collagenase in cell isolation is encouraging. Credit for the program's success is due to the many researchers who cooperated so openly with their time and talent.

Your comments and interest are welcome. Additional information on this application of Collagenase and a copy of our current catalog are available on request.
Electrophoresis!

New gel maker and cell give superior separations.

Bio-Rad's new Model 210 Precision Gel Preparation System is easy to use and makes gels with a sharply defined flat application surface. This eliminates the tedious water overlay technique and frequently makes unnecessary the use of stacking gels and discontinuous buffer systems. In addition, the gels are consistently uniform in length and in concentration. Bio-Rad's new Model 300 Gel Electrophoresis Cell lets you photopolymerize the gels in place then run at the same controlled temperature. Another feature: it has hydrostatic equilibration, especially useful for soft gels. The Model 300 has an 18 tube capacity.

Couple these two pieces of precision equipment with Bio-Rad's electrophoresis purity reagents and you have the ideal partners for sharp, clear bands — even in marginal cases.

BIO-RAD Laboratories
32nd & Griffin Ave., Richmond, CA 94804, Phone (415) 234-4130
Also in: Rockville Centre, N.Y.; Bromley, Kent, England; Milan, Italy; Munich, Germany.

SARGENT-WELCH
new pH Electrodes with plug-in cables

Now you can have the convenience of a whole drawerful of pH electrodes ... without the storage mess ... and save money too!

When you've got a pH job to do, pick your electrode ... the right length cable ... plug in and twist ... and you're ready to go. Break an electrode and that's all you replace ... your cable still has a useful life.

7 electrodes + 8 cables = 20 electrode/cable assemblies and consummate convenience.

SARGENT-WELCH
Sargent-Welch Scientific Company
7300 North Linder Avenue
Skokie, Illinois 60076
(312) 677-0600

Readers who found Westfall's article "Newton and the fudge factor," of great interest, as I did, might like to look at what one man, at least, took to be some fudging in Newton's development of calculus—or "fluxions," as he called it. I am referring, of course, to George Berkeley's *The Analyst* (1734) and the additional writing to which it led. This can be found in any collection of Berkeley's works. Not only is it of historical interest, but there are points raised which even now a teacher of introductory calculus, in particular, might do well to ponder.

Incidentally, is there not a moral to be found in all of this? Is it not likely that a time will come when some of the work of which we are now most proud will be seen to contain outrageous fudges? Nor is it too hard to see some places in which this might come about. Our "renormalizations," for instance, may some time be called by a much less charitable name. It seems now to be agreed that some of the early papers on relativity contained actual mistakes, which had the same effect as fudges.

In one sense, we need not make too much of all this. It would appear that
"to fudge is human." But because of that very fact, we should be ready to admit the possibility that we may, perhaps almost unconsciously, have committed a fudge, or overlooked one by someone else. Recently, when Dingle (1) and others suggested that there is something wrong—call it a mistake or call it a fudge—with the theory of relativity, what they encountered could scarcely be described by any term other than "persecution." Earlier, O’Rahilly, who had rather similar experiences, said that the heretic is treated worse in physics than in theology. We should remember that a theory which is to a great extent true may still be fudged here and there; those who point this out are in the same position as physicians who tell us that, while we are mainly healthy, we have such and such an illness, which fortunately can be cured.

H. L. ARMSTRONG

Department of Physics,
Queen’s University,
Kingston, Ontario, Canada

Reference

While reading Westfall’s article I was reminded of an anecdote told by the late J. C. McLennan during a lecture at the University of Toronto about 40 years ago.

McLennan said, as I remember, "One time I remarked enthusiastically to Nils Bohr, how wonderful it was that his equations yielded such an accurate value of Rydberg’s constant. Nils said to me ‘Of course, McLennan, I made it come out that way.’"

McLennan then said to us, "Perhaps that is the difference between Nils Bohr and me."

ARTHUR H. BOULTBEE

70 Bush Avenue,
Greenwich, Connecticut 06830

In reply to McHugh, I am unable to find in Newton’s language any grounds for the assertion that he offered the two corrections to the velocity of sound as hypotheses to account for the discrepancy. He did not present them in such a manner. Moreover, he assigned “quantitative exactitude” to them, and did so without any evidence external to the calculation that such “side effects” even exist.

RICHARD S. WESTFALL

Clare Hall, Herschel Road,
Cambridge, CB3 9AL, England

Effects of Marijuana Use

John Kaplan’s review (12 Jan., p. 167) of the recent American and Canadian government-sponsored reports (1, 2) on cannabis does justice to neither.

Like the British Wootton Report of 1968 (3), these North American studies did, indeed, recommend a more humanitarian approach to the legal issues. What Kaplan fails to mention is that the reports contain much cautionary clinical material which led both the American commission (1, p. 134) and the Canadian commission (2, p. 301) to conclude, as had the British committee (3, Section 71), that the use of marijuana was to be discouraged for various individual and public reasons.

These reasons are perhaps best stated by the Canadian commission (2, p. 274):

To sum up, then, it seems to us that there are at least four major grounds for social concern: the probably harmful effect of cannabis on the maturing process in adolescents; the implications for safe driving arising from impairment of cognitive functions and psychomotor abilities, from the additive interaction of cannabis and alcohol, and from the difficulties of recognising or detecting cannabis intoxication; the possibility suggested by reports in other countries and clinical observations on this continent, that the long-term heavy use of cannabis may result in a significant amount of mental deterioration and disorder; and the role played by cannabis in the development and spread of multi-drug use by stimulating a desire for drug experiences and lowering inhibitions about drug experimentation.

A number of people have discontinued the use of cannabis because of these and other problems, and even continuing users are becoming more willing to admit that—as Gabriel Nahas demonstrates in his excellent coverage of the subject (4)—marijuana is a “deceptive weed.”

CONRAD J. SCHWARZ

Student Health Service and
Department of Psychiatry,
University of British Columbia,
Vancouver 8, Canada

References
Photomicroscope III—there's room at the top because of what's in the middle and the bottom.

The camera and the controls are completely integrated. The completely automatic 35mm camera of Photomicroscope III is built into the microscope stand for ease of operation and stability. All the controls are built into the base for ready accessibility and compactness. So the top is free for the addition of whatever auxiliary documentation or observation equipment you may desire—such as the unique Zeiss Glarex Projection Screen, shown below.

More light on the film. With Photomicroscope III you can direct 98% of the light onto the film and still have enough for automatic exposure detection with no change in the setting for film sensitivity. This is particularly advantageous for fluorescence and polarizing photomicrography.

Now, an automatic electronic flash...a first in photomicrography. This built-in flash unit eliminates reciprocity failure and vibration problems and the need for color temperature compensation. And you still have, of course, the widest choice of illumination equipment for all microscope techniques in both transmitted and reflected light.

Much more. Get the whole story by writing Carl Zeiss, Inc., 444 Fifth Ave., New York, N. Y. 10018. Or call (212) 736-6070.

In Canada: 45 Valleybrook Drive, Don Mills 405, Ont., M3B 2S6. Or call (416) 449-4660.

Nationwide service.

BRANCH OFFICES: BOSTON, CHICAGO, COLUMBUS, HOUSTON, LOS ANGELES, SAN FRANCISCO, WASHINGTON, D. C.
reflects a very narrow view of "science" and is wrong on two counts. First, it has been shown in a recent paper (1) that there are subgroups in the human population that are highly susceptible to low levels of radiation — levels which have no demonstrable effect on the vast majority of persons. It is doubtful whether it is "scientific" to study radiation effects in human populations that are not inbred by doing experiments on inbred mice. Second, it is possible to do studies of human beings which are every bit as scientific as in vivo or in vitro laboratory studies (2) and which are directly relevant to the protection of the public against environmental hazards.

The real issue is whether scientists are willing to face up to their responsibilities as scientists, or whether they will play language games to escape these responsibilities. Are we going to debate whether an issue is "trans-scientific" or not, or are we going to go out and get hard data which will settle the issue? The need is not for "trans-scientific debate," but for effective measures to protect the public against low level radiation.

An immediate need is an adequate surveillance system (1). This system would be expensive, and entail inconvenience. For instance, a card might have to be filled out to report every diagnostic x-ray, every SST flight, every visit to installations of the Atomic Energy Commission (AEC), and so forth. Annual surveys of all persons living near nuclear power plants might be needed. Leukemia and other diseases might have to be made "reportable" throughout the United States and monitored as infectious diseases currently are throughout the United States.

This "commitment in perpetuity" to protecting the public is part of the cost of nuclear and other technology. The sooner we recognize this and get down to the scientific task of setting up protective systems, the better.

IRWIN D. J. BROSS
Roswell Park Memorial Institute,
Buffalo, New York 14203

References

I am prepared to concede that an issue which appears to be trans-scientific at one stage of scientific development may, at a later stage, be susceptible to resolution by a more sophisticated science. I doubt whether most experts in either radiobiology or epidemiology would agree at this time that the effects of radiation doses of about 10 millirads per year (the present AEC standard for reactor emissions), or even the 170 millirads per year previously accepted, can be shown to have an unequivocal effect on humans. On the other hand, if the sample is large enough and if the studies can be successfully carried out over a long enough time, then I agree there is no reason in principle why the issue cannot be resolved. The disagreement then is mainly one of deciding whether the enormous effort required for such studies is an appropriate allocation of resources. The evidence Bross presents in his paper in the New England Journal of Medicine (1) on incidence of leukemia in children exposed to intrauterine diagnostic radiation of around 1000 millirads hardly seems relevant to the issue of chronic exposure at a rate of 10 millirads per year.

ALVIN M. WEINBERG
Oak Ridge National Laboratory,
Oak Ridge, Tennessee 37830

Reference
Don’t buy any microbalance... until you’ve seen the new Perkin-Elmer Autobalances.

Our new digital Autobalance gives you a combination of automation, speed, simplicity, and ruggedness never before available.

Really "goof-proof!"

No more guessing. Just put the sample on the pan and read the weight. Even a "but-terfingers" can get the same accurate answers as your best technician.

We have eliminated judgment factors, pointers, magnifiers, multipliers, verniers... and errors. Controls are the latest human-engineering designs, logically laid out, and exceptionally easy to understand and use. We’ve designed the Autobalance™ to be rugged. Use it almost anywhere without fear of damage.

Fully automatic.

An Autobalance can balance the beam, select the best range, shift the decimal point, display the weight on a linear digital readout, and even print it (with an optional printer) all automatically and within seconds. This is what all microbalances ought to do. Perkin-Elmer Autobalances do!

Use them anywhere.

Autobalances can be used in extraordinary environments. The weighing unit is separate from the control/readout, so you can weigh on a table, in a glove box, or in almost any controlled environment—vacuum, pressure, heat, cold, wet, dry, corrosive, radioactive... you name it.

Compare the specs.

No other microbalance has a capacity of five grams and an ultimate precision of better than 0.1 microgram. Request a copy of our literature and study all the specifications in detail. They’re important. And you’ll discover that ours are the best.

Our all-solid-state designs assure unprecedented reliability, long life, and confidence in the results you get.

Several models are available to fit every application and every budget.

Autobalances are the finest and fastest microbalances in the world, and they are backed by the Perkin-Elmer sales, service, and dealer organizations.

For further details and literature on our complete Autobalance line write to Instrument Division, Perkin-Elmer Corporation, Main Avenue, Norwalk, Conn. 06856.

Perkin-Elmer
Committed to helping your samples tell you more.
GILSON BISCRIPUTAL POLYGAPRAPHS
NEW! HEATED STYLUS PHYSIOLOGICAL RECORDING ON THERMOCHROMIC PAPER
Bond paper texture • Abrasion-resistant • Crumple-resistant (for the record that didn't look relevant)
• Substantially lower in cost than conventional wax-coated heat-sensitive paper
NEW! HIGH FREQUENCY PEN RESPONSE UP TO 90 Hz
NEW! INTEGRATED CIRCUIT ELECTRONICS
5- and 8-channel Polygraphs
5-channel Projector Polygraph
1- and 2-channel portable recorders
50 mm deflection galvanometer channels
Pressure, force, direct coupled potentials, respiration, ECG, EEG, EMG, etc.
310 or 200 mm: full chart width servo channels
Dye dilution curves, GSR, O₂, pH, CO₂, temperature, respiration, etc.
Biscriptual Polygraphs can also be converted for ink pen recording

Call or write for literature and a sample recording

GILSON MEDICAL ELECTRONICS, INC.
P.O. BOX 27, MIDDLETON, WISCONSIN 53562 • TELEPHONE 608/836-1551
EUROPEAN MANUFACTURING PLANT
Gilson Medical Electronics • 69, rue Gambetta, 95-Villiers-le-Bel, FRANCE • Telephone 990-10-38

Circle No. 6 on Readers' Service Card
We introduced digital plotting.

For the last ten years, our drum plotters have set the standards of their industry.

Our 565, and the models we've built around it, have made us the largest manufacturer of drum plotters in the world.

But we've known for a long time that someone would come along with something new one day. What we've been working on, is making certain that the new leader would still be us.

Starting now, you'll measure drum plotters by our two new models.

First, the 936. It's faster and it has greater plotting quality than the unit it replaces.

And, it costs less.

Next, our top of the line 1036. It's almost twice as fast as the 936. And again, its plotting quality is higher and its price is lower than the unit it replaces.

We've increased performance and decreased the price of the drum plotter. And that's going to be a hard act to follow.

Call or write California Computer Products, Inc., SM-M6-73, 2411 West La Palma Avenue, Anaheim, California 92801. (714) 821-2011.

Call No. 13 on Readers' Service Card
light, although with low probability. There are a number of direct and sensitized mechanisms that can conceivably permit light absorption by pesticides in the environment. On the surfaces of soil particles, for example, charge-transfer processes may be very important. Electronic energy transfer is likely to be the least important process for pesticides in the environment. Mechanisms involving ground-state complex formation and excited complex formation, electron transfer, and “chemical” sensitization are much more likely to occur, and their operation will depend on the nature of the microenvironment.

C. S. Foote (University of California, Los Angeles) outlined mechanisms of photochemical oxidation reactions occurring in the presence of oxygen. Oxygen may function as an energy acceptor in a reaction with the photoexcited triplet state of an organic molecule to give singlet oxygen, a metastable excited species. The reaction pathways of singlet oxygen with olefins, dienes, heteroatoms, and phenol were outlined. Another significant oxidation reaction is the reaction of free radicals with oxygen to give a peroxy radical which often initiates a chain autoxidation process.

O. L. Chapman (Iowa State University) outlined the relationship of organic photochemistry to pesticide chemistry. Predictably, pesticide molecules might be expected to undergo a number of types of photochemical reactions. These include rearrangement of heterocyclic or aromatic systems, photo-Fries reactions, elimination processes, and rearrangements of aromatic or olefinic nitro compounds to nitrites. Photooxidation, photoreduction, photo-\textit{dimerization}, halogen bond cleavage, and the enhancement of phenol acidity by light are among the types of photochemical reactions that may be significant in the natural environment.

Research in photodynamic action was summarized by J. D. Spikes (University of Utah). Photodynamic damage to biological macromolecules results by selectively sensitized photooxidation of component residues such as the guanine residues in DNA and several amino acid residues in proteins. The formation of a triplet-excited state of a dye is the first stage of photodynamic action, and, subsequently, singlet oxygen may be produced by the reaction of triplet dye-stuff with molecular (triplet) oxygen. In a second pathway, the triplet dye may abstract a hydrogen atom from a substrate molecule to give a free radical that undergoes oxidation. Finally, other metastable states of the dye may be formed and react with substrate. Several examples of the practical importance of photodynamic reactions were cited. The possible role of photodynamic reactions in the photodegradation of pesticides in the environment was also discussed.

W. Klein (Radiation Biology Laboratories, Smithsonian Institution) discussed efforts to quantify the intensity and quality of the visible and ultraviolet radiation which reaches the earth and which would be available for photochemical reactions. He presented results which indicated that this radiation exposure is highly variable depending on season and cloud cover, as well as smog and haze.

A general discussion of the practical significance of pesticide photoalteration followed, with D. G. Crosby (University of California, Davis) as chairman. Several panels considered various aspects of the problem, and their conclusions and recommendations may be briefly summarized as follows:

The use of pesticides, especially synthetic pesticides, undoubtedly will continue for many years, but an accounting of the distribution of pesticides is very incomplete. A fundamental problem is the location and fate of residual pesticides. Present information indicates that most pesticides are altered by sunlight, but there is very little indication of the magnitude of photoalteration processes that affect pesticides. The principal concern is with the identity and the potential hazard of photoalteration products. Development of reliable information on the toxicology of the photoproducts is impeded by several considerations: (i) ignorance of the chemical nature of the photoproducts produced; (ii) a lack of standardized procedures for the investigation of photochemical reactions; and (iii) a lack of knowledge of the nature of the macro- and microenvironments to which pesticides are exposed in the field, including the intensity and spectral distribution of solar energy at the earth’s surface, the effects of adsorption on soil or foliar surfaces, and the effects of sensitizers in the solid phase or in water.

The most likely sites in which photoalteration can occur appear to be the atmosphere, either in the vapor phase or on particulates, and organic films on the surface of water, soils, and plants. A case was made for the study of the distribution of pesticides and their photoalteration products throughout all components of the environment.

Regulation of pesticides will require protocols for standardized estimation and prediction of photoalteration. Before such protocols are closely defined, gaps in current knowledge must be filled. Furthermore, many of the potential alternative methods of pest control such as the use of microbial agents, insect juvenile hormones, pheromones, and chemosterilants are not exempt from photoalteration reactions.

There is a lack of communication between researchers in basic photochemistry and those concerned with pesticide use and development. There is enough common ground between these two groups to ensure fruitful exchanges of information, and this needs encouragement. It is also possible to be critical of industry and government because of their reluctance to make public research information that has been developed to ensure the registration of proprietary compounds. Some clearinghouse of photochemical information generated, regardless of source, would be extremely beneficial for more rapid progress on these problems.

Despite the proportions of the problem delineated, a somewhat unanticipated piece of information which emerged from the meeting was that research support for the general area appeared to be decreasing. A more extensive summary of the proceedings is in preparation and will shortly be available on request from J. R. Plimmer.

Robert Rabson
Biology Branch, Division of Biomedical and Environmental Research, U.S. Atomic Energy Commission, Washington, D.C. 20545

Jack R. Plimmer
Pesticide Degradation Laboratory, Agricultural Environmental Quality Institute, U.S. Department of Agriculture, Beltsville, Maryland 20705

Forthcoming Events

July

15–20. American Assoc. of Clinical Chemists, New York, N.Y. (J. S. King, Jr., AACC, P.O. Box 15053, Winston-Salem, N.C. 27103)

15–20. World Federation of Culture
$50,000 of life insurance costs less than $100 at age 30.

That's right! For a man, age 30, the annual premium for a 20-Year Home Protection policy providing $50,000 initial amount of insurance is $159.00. The first-year dividend, based on our current dividend scale, is $61.50, making a net payment of $97.50. Dividends, of course, are not guaranteed.

The Home Protection plan is level premium Term insurance providing its largest amount of protection initially, reducing by schedule each year to recognize decreasing insurance needs. This is just one example of the many low-cost TIAA plans available.

If you need more protection for your family, ask us to mail you a personal illustration with figures for a policy issued at your age. We'll also send the Life Insurance Guide describing other TIAA policies.

ELIGIBILITY

Eligibility to apply for this or other TIAA life insurance is limited to persons employed at the time of application by a college, university, private school, or other nonprofit educational or scientific institution that qualifies for TIAA eligibility.
Your Lab is More Efficient with

TIME CONSECUTIVE NUMBERING SYSTEMS

Use to Number:
- Test Tubes...
- Requisition Forms...
- Containers...
- Control Lots...

There are many ways a Time Consecutive Numbering System can save you time through increased efficiency. Inexpensive and easy-to-use, Time Consecutive Number Labels are self-sticking — adhere to any surface in temperatures ranging from -70°F to +250°F. Numbers can be repeated from 1 to 10 times on a choice of seven different color stocks. Available in handy precut tablet or clinically safe BACTERIOSTATIC roll form.

Adaptable to any numbering system you develop, these labels are supplied with a standard "No." prefix or any of 5 other prefixes. Think of the efficient, economical systems you can develop using Time Consecutive Numbers.

Write today for free samples, and more information on Time Consecutive Numbers and other TIME Products for the Laboratory. We will also send the name of your nearest dealer.

NOTE: We have recently moved into new facilities; enlarged and automated to serve you better.

PROFESSIONAL TAPE COMPANY, INC.
DEPARTMENT 12
144 TOWER DR., BURR RIDGE (HINSDALE), ILL. 60521

Circle No. 90 on Readers’ Service Card

Symposia on—

DENTISTRY

BIOLOGY OF THE MOUTH

A collection of comprehensive, multi-disciplinary articles dealing with problems of the biology of the mouth and of oral diseases and also the borderlands where fundamental approaches and investigations in physics and chemistry relate to, and can be brought to bear on such problems.

ENVIRONMENTAL VARIABLES IN ORAL DISEASE

Twenty-four distinguished scientists present the findings of their research on the role of environmental factors in oral disease. Geographical and clinical considerations; the oral environment-nutrition and dental caries; experimental considerations in oral soft lesions; prenatally occurring influences.

MECHANISMS OF HARD TISSUE DESTRUCTION

Forty-nine outstanding scientists in the fields of dentistry, medicine and zoology participate in a multidisciplinary symposium on the destruction of mineralized structures by organisms and physical and chemical agents.

Special price offer

All three volumes: $24.95

When payment is sent with order: $21.95

Temperature Control to \(\pm 0.001^\circ C \)

Choose from five YSI Temperature Controllers and nearly fifty Temperature Probes in designs to fit most scientific, medical and industrial requirements. Write for details.

AMERICAN ASSOCIATION for the ADVANCEMENT of SCIENCE

1515 Massachusetts Avenue, N.W.
Washington, D. C. 20005

Send to Dept. 0
The Shandon-Elliott Magnastain automatic slide staining machine processes up to 200 slides in a single routine that involves 22 stations with an option of draining or rinsing in between any two consecutive immersions. Variable programming allows you to set up individual routines to suit your techniques. Also, exact uniformity of slides is markedly improved when you use the Magnastain. For details on the Magnastain 200, contact Shandon Southern Instruments, Inc., 515 Broad Street, Sewickley, Pa. 15143 (Pittsburgh District).

Revco is More than a Freezer... It's a System.

You get more than dependable ULTra-low® temperature when you buy a Revco freezer. We adapt the freezer to your particular use through the proper accessories from our inventory control systems. Let us show you how Revco provides the total answer to your ULTra-low® temperature needs. Available in sizes from 1-1/2 to 25 cubic feet, including the standard 6, 5, 9, 12 and 17 cubic foot sizes, in chest models and upright.

1-7. Electroencephalography and Clinical Neurophysiology, 8th intern. congr., Marseile, France. (G.-C. Lairy, Laboratoire d'EEG, Hôpital Henri Rousselle, I, rue Cabanis, Paris 14e France)
2-6. Victimology, intern. symp., World Psychiatric Assoc., Jerusalem, Israel. (I. Drapkin, Organizing Committee of Criminology, Faculty of Law, Hebrew Univ. of Jerusalem, P.O. Box 4051, Jerusalem)
2-7. International Congr. on Mercury, sponsored by the Inst. Tecnologico Metalurgico Emilio Jimeno-Univ. of Barcelona, and the Consejo de Administracion de las Minas de Almaden y Arrayanes, Barcelona, Spain. [Secretaria del Congreso, Facultad de Ciencias (Pedralbes), Univ. of Barcelona, Barcelona-14]
2-10. Society of Protozoologists, Clermont-Ferrand, France. (D. M. Hammond, Dept. of Zoology, Utah State Univ., Logan 84321)
2-14. Tropical Medicine and Malaria, 9th intern. congr., Athens, Greece. (E. M. H. Mofidi, School of Public Health, Univ. of Tehran, Tehran, Iran)
3-6. Chemical Thermodynamics, 3rd intern. conf., Intern. Union of Pure and Applied Chemistry, Baden, Vienna, Austria. (F. Kohler, Inst. of Physical Chemistry,

3-7. Molecular Sieves, 3rd intern. conf., Eidgenössische Technische Hochschule and the Swiss Chemical Soc., Zurich, Switzerland. (W. M. Mieter, Inst. für Kristalllographie der ETH, Sonneggstr. 5, 8006 Zurich)

3-7. International Union of Pure and Applied Chemistry, 24th intern. congr., Hamburg, Germany. (Secretariat, 7 Via Cornelio Celso, 00161 Rome, Italy)

5-7. Nuclear Structure: Heavy Ions Conf., Inst. of Physics, Manchester, England. (Meetings Officer, IP, 47 Belgrave Sq., London, S.W.1)

5-12. American Phytopathological Soc., 65th meet., Minneapolis, Minn. (R. J. Green, Jr., Dept. of Botany and Plant Pathology, Purdue Univ., Lafayette, Ind. 47907)

5-12. Plant Pathology, 2nd intern. congr., Intern. Soc. for Plant Pathology, Minneapolis, Minn. (J. E. Mitchell, Dept. of Plant Pathology, Univ. of Wisconsin, Madison 53706)

8-15. Chemotherapy, 8th intern. congr., Athens, Greece. (P. Kontomichalou, P.O. Box 1554, Athens)

8-15. Neurology, 10th intern. congr., Barcelona, Spain. (J. M. Espadaler, Consejo de Cienctos, 318, Barcelona 7)

9-12. American Ceramic Soc. (Electronics Div.), Atlanta, Ga. (F. P. Reid, ACS, 4055 North High St, Columbus, Ohio 43214)

9-13. International Assoc. on Water Pollution Research, 7th, Paris, France. (B. B. Berger, Room 211, Graduate Research Center, Water Resources Research Center, Univ. of Massachusetts, Amherst 01002)

9-21. International Assoc. of Geomagnetism and Aeronomy, Kyoto, Japan. (Prof. Rikitake, Earthquake Research Inst., Univ. of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo Japan)

10-11. Turbulence in Liquids, 3rd symp., Univ. of Missouri–Rolla, Rolla. (J. L. Zaklin, Dept. of Chemical Engineering, Univ. of Missouri–Rolla, Rolla 65401)

10-13. European Conf. on Pediatric Nephrology, Strbske Pleso, Czechoslovakia. (F. Demant, Clinic of Pediatrics of the Faculty Hospital, Kosice, Czechoslovakia)

The ISCO Gel Scanner gives you a UV absorbance profile of an electrophoresed gel without removing it from the running tube for staining. Gels are polymerized and electrophoresed in a UV-transparent quartz tube, and transported at intervals during and after migration through an ISCO absorbance monitor for scanning at 254 or 280 nm. Sensitivity and resolution is comparable to conventional instruments costing five times as much. The absorbance monitor can also be used for chromatographic columns and centrifuged density gradients.

ELECTROPHORESIS APPARATUS

The linear alignment of gel tubes, and a bottom tank which can be easily lowered for access to all the tubes, offer you convenience you've never had before. Buffer tanks hold completely submerged tubes to 10" in length, and have electrical interlocks and cooling.

ISCO makes additional instruments for electrophoresis, column chromatography, and other biochemical laboratory techniques. Everything is described in our catalog: a copy is waiting for you.

10-15. International Assoc. for Cybernetics, 7th, Namur, Belgium. (J. Lemaire, Place Andre Ryckmans, Palais des Expositions, B-5000, Namur)

12-14. American Ceramic Soc. (Electronics Div.), Atlanta, Ga. (F. P. Reid, ACS, 4055 North High St., Columbus, Ohio 43214)

12-14. Physics of Semimetals and Narrow-Gap Semiconductors, Univ. of Wales and Inst. of Science and Technology, Cardiff, Wales. (J. E. Aubrey, Dept. of Applied Physics, UW and IST, King Edward VII Ave., Cardiff CF1 3NU)

12-17. American Medical Writers Assoc., Bethesda, Md. (E. Stahl, Ayerst Labs., Montreal, P.Q., Canada)

13-14. Society for Management Information Systems, 5th annual conf., Chicago, Ill. (A. Suter, SMIS, 221 North La Salle St., Chicago 60601)

13-15. International Congr. on the Knee Joint, 75th, Dutch Orthopaedic Assoc., Rotterdam, Netherlands. (Secretariat, Holland Organizing Centre, 16 Lange Voorhout, The Hague, Netherlands)

16-20. American Oil Chemists Soc., Chicago, Ill. (J. Lyon, AOCS, 508 S. Sixth St., Champaign, 61820)

16-20. American Acad. of Ophthalmology and Otolaryngology, Dallas, Texas. (C. M. Kos, 15 Second St., SW, Rochester, Minn. 55901)

24-28. Noble Gases Symp., jointly by U.S. Environmental Protection Agency, Natl. Environmental Research Center, and Univ. of Nevada, Las Vegas. (D. S. Barth, NERC, P.O. Box 15027, Las Vegas 89114)

October

1-4. American Acad. of Family Physicians, Denver, Colo. (R. Tusken, AAFP, Volker Blvd. at Brookside, Kansas City, Mo. 64112)

1-5. American Assoc. for Laboratory Animal Science, 24th annual conf., Miami Beach, Fla. (Joseph J. Garvey, AALAS, 2317 W. Jefferson St., Joliet, Ill. 60435)

1-5. Symposium on Remote Sensing in Oceanography, American Soc. of Photogrammetry, Orlando (Disney World), Fla. (J. S. Beazley, 330 Ponce St., Tallahassee 32303)

1-6. International Congr. of Rheumatology, 13th, Kyoto, Japan. (S. Sasaki, Japanese Rheumatism Assoc., Shimbunkaikan 63, 3-8-4 Ginza, Chuo-ku, Tokyo, Japan)

3-5. Clinical Orthopaedic Soc., Cleveland, Ohio. (M. L. Clayton, COS, 2045 Franklin St., Denver 80205)

4-6. Refractories Div., American Ceramic Soc., Bedford, Pa. (F. P. Reid, ACS, 4055 N. High St., Columbus, Ohio 43214)

5-6. Psychopharmacology Symp., World Psychiatric Assoc., Wroclaw, Poland. (A. Bukowczyk, Kraszewskiego 25, Wroclaw)

5-9. Sigma XI, Fostana, Wis. (T. T. Holme, SX, 345 Whitney Ave., New Haven, Conn. 06510)

6-12. American Concrete Inst., Ottawa, Ont., Canada. (ACI, Box 4754, Redford Stat., 22400 W. Seven Mile Rd., Detroit, Mich. 48219)

6-13. World Federation for Mental Health, 25th congr., Sydney, Australia. (A. Stoller, Mental Health Authority, 300 Queen St., Melbourne C1, Australia)

7-11. Clay Minerals Soc. (10th mtg.) and Clay Minerals Conf. (22nd), Banff, Alta., Canada. (J. E. Gillott, Dept. of
12-14. National Assoc. of Biology Teachers, St. Louis, Mo. (J. P. Lightner, NABT, 1420 N St., NW, Washington, D.C. 20005)
12-20. American Soc. of Clinical Pathologists, Chicago, Ill. (M. Damron, ASCP, 710 S. Wolcott Ave., Chicago 60612)

14-18. American Inst. of Ultrasound in Medicine, Ann Arbor, Mich. (M. A. Wainstock, Dept. of Ophthalmology, Univ. of Michigan Medical Center, Ann Arbor)
14-20. Allergology, 8th intern. congr., Tokyo, Japan. (Japanese Soc. of Allergology, c/o Dept. of Microbiology and Immunology, Nippon Medical School, 1-1 Sendagi, Bunkyoku-ku, Tokyo)
14-20. World Medical Assoc., Munich, Germany. (A. Z. Romualdez, WMA,
HOW TO GET THE SHOW ON THE ROAD.

Now you have the Beckman New Dimension Series of audio-visual technical programs available for your own lab, plant, or classroom...the same professionally acclaimed courses offered nationwide in Beckman Training Centers.

Each program, in a special album, consists of printed script, set of 35mm slides, and tape cassettes automatically keyed to the slides.

Courses listed below range from basic material to advanced instruction. For prices and full information, call or write to Beckman Technical Education Center, 2500 Harbor Blvd., Fullerton, Calif. 92634.

Enzymatic Analysis • Instrumental Method in Cell Biology • Liquid Scintillation Counting • Electrochemical Measurements • Physiological Measurements • UV-Visible Spectroscopy • Infrared Techniques • Radioimmunoassay • Gas Chromatography • Electrophoresis • Electroencephalography. And many more.

BUY OUR EDUCATIONAL PROGRAMS.

Circle No. 62 on Readers' Service Card
produced a variant with increased resistance to the antibodies. This new variant was isolated and grown in the presence of antibodies specific for it.

After several such cycles of growth and mutation, Hannoun isolated a variant that no longer mutated under the experimental conditions. This variant, he postulates, represents the end point of evolution within the A₉ subtype, and is thus a virus that would be expected to appear in the late 1970's. Support for this postulate was provided by the discovery that the London influenza variant first isolated in 1972 was antigenically quite like the first mutant Hannoun had produced in his laboratory a year earlier.

As a result of an only partially understood aspect of the mutation process, the Pasteur group believes, antibodies specific for any one influenza mutant also provide protection against all antecedent mutants within that subtype. Vaccines produced from Hannoun's final variant should thus provide protection against all A₉ variants that might appear within this decade—although the emergence of the next major variant will necessitate beginning all over again. Limited studies have already shown that a killed virus vaccine produced from the Pasteur variant is effective against current strains of influenza, and the French government has licensed it for use as soon as possible. It is unlikely that the vaccine will be licensed for use in the United States for at least another year, however, because of the need for more data on its efficacy.

Because the Pasteur vaccine is made with inactivated viruses, it is expected to be no more effective than current killed virus vaccines. If Hannoun's methodology is proved correct, then, the best approach might involve a combination of techniques. That is, the final variant isolated by Hannoun could be used to produce attenuated virus vaccines by the method of Chanock, Davenport, or Kilbourne. In that fashion, almost complete protection could be provided from shortly after the appearance of a major new subtype until the appearance of the next subtype. Given adequate funding for the development and application of these techniques, some investigators argue, there need never be another influenza pandemic.

—THOMAS H. MAUGH II

RESEARCH NEWS

(Continued from page 1162)
NEWS AND COMMENT

(Continued from page 1158)

Lewis Daniels, 42; professor of pedodontics, University of California; 28 January.

Lewis M. Daniels, 43; associate professor of dentistry, University of Southern California; 23 January.

J. Fenton Daugherty, 75; professor emeritus of physics, University of Delaware; 19 February.

Earl H. Dearborn, 57; former head, pharmacology department, Boston University School of Medicine; 28 February.

Harry G. Detwiler, 58; chairman of education, George Washington University; 17 February.

Harold M. Dorf, 76; former dean of state-wide education, University of Michigan; 31 January.

Nathan B. Eddy, 82; retired chief, analgesics section, chemistry laboratory, National Institute of Arthritis, Metabolism, and Digestive Diseases; 28 March.

Elsa M. Ehrenstein, 71; former professor of pharmacy, Philadelphia College of Pharmacy and Science; 21 February.

Immanuel Estermann, 73; professor emeritus of physics, Israel Institute of Technology and University of Hamburg, Germany; 30 March.

Chester N. Frazier, 81; professor emeritus of dermatology, Harvard University; 14 February.

Ernst Gelhorn, 80; professor emeritus of physiology and neurophysiology, University of Minnesota; 20 April.

Vernon H. Goerke, 68; former visiting professor of acoustics, Washington State University; 27 February.

T. Campbell Goodwin, 71; professor emeritus of pediatrics, Columbia University; 30 May.

Douglas P. Head, 74; former professor of medicine, University of Minnesota; 14 April.

C. Doris Heilman, 62; professor of history of science, Queens College; 28 March.

A. Stanley Holt, 52; research professor of biology, University of Ottawa; 26 December 1972.

Jules D. Holzberg, 57; chairman, psychology department, Wesleyan University; 18 February.

George L. Kaltsounis, 46; professor of education, State University of New York College, Buffalo; 30 March.

Louis N. Katz, 75; director emeritus, Cardiovascular Institute, Michael Reese Hospital and Medical Center; 2 April.

Newell C. Kephart, 62; former professor of education, Purdue University; 12 April.

Robert N. Kersey, Jr., 52; associate professor of electrical and computer engineering, Clemson University; 3 February.

Herbert J. Kildee, 87; dean emeritus, College of Agriculture, Iowa State University; 10 February.

Edward H. Kraus, 97; former dean, College of Literature, Science and Arts, University of Michigan; 3 February.

Edward T. Ladd, 52; professor of education, Emory University; 24 January.

Charles E. Lawall, 81; former president, West Virginia University; 5 April.

Francis L. Lederer, 74; professor emeritus of otolaryngology, University of Illinois; 3 April.

Frank C. Mathers, 92; professor emeritus of chemistry, Indiana University; 23 March.

Ferdinand Menefee, 87; professor emeritus of engineering mechanics, University of Michigan, 12 February.

David W. Northup, 66; professor emeritus of physiology and biophysics, West Virginia University; 13 March.

Dickinson W. Richards, 77; professor emeritus of medicine, Columbia University; 23 February.

Edwin H. Rohrbeck, 77; professor emeritus of agricultural extension, Pennsylvania State University; 11 February.

Peter A. Tavormina, 55; director of biochemistry, Mead Johnson Research Center; 26 March.

Thurio Thomas, 64; professor of sociology, Carleton College; 14 April.

Derrick Vail, 74; professor emeritus of ophthalmology, Northwestern University; 19 April.

Joan F. White, 49; assistant professor of zoology, Eastern Illinois University; 26 March.

BACKGROUND

fessor of education, Purdue University; 12 April.

Robert N. Kersey, Jr., 52; associate professor of electrical and computer engineering, Clemson University; 3 February.

Herbert J. Kildee, 87; dean emeritus, College of Agriculture, Iowa State University; 10 February.

Edward H. Kraus, 97; former dean, College of Literature, Science and Arts, University of Michigan; 3 February.

Edward T. Ladd, 52; professor of education, Emory University; 24 January.

Charles E. Lawall, 81; former president, West Virginia University; 5 April.

Francis L. Lederer, 74; professor emeritus of otolaryngology, University of Illinois; 3 April.

Frank C. Mathers, 92; professor emeritus of chemistry, Indiana University; 23 March.

Ferdinand Menefee, 87; professor emeritus of engineering mechanics, University of Michigan, 12 February.

David W. Northup, 66; professor emeritus of physiology and biophysics, West Virginia University; 13 March.

Dickinson W. Richards, 77; professor emeritus of medicine, Columbia University; 23 February.

Edwin H. Rohrbeck, 77; professor emeritus of agricultural extension, Pennsylvania State University; 11 February.

Peter A. Tavormina, 55; director of biochemistry, Mead Johnson Research Center; 26 March.

Thurio Thomas, 64; professor of sociology, Carleton College; 14 April.

Derrick Vail, 74; professor emeritus of ophthalmology, Northwestern University; 19 April.

Joan F. White, 49; assistant professor of zoology, Eastern Illinois University; 26 March.

Erratum: In the caption of the cover photograph for 25 May 1973, the word "below" is misspelled; it should be deleted from the first sentence, and the second sentence should read: "(Below) Same view taken through a cylindrical lens...". Two errors occurred in the report by Freeman and Athibos in the same issue, p. 876: in column 2 line 4, "Freeman and co-workers" should be changed to "Freeman et al."; in column 3 line 44, "the visual resolution" should be changed to "visual resolution".--Ed.

Erratum. The major affiliations of the following new members of the National Academy of Sciences (Science, 11 May) are: Edward H. Ahrens, Jr., Rockefeller University; Robert W. Fogel, University of Chicago; and Gilbert F. White, University of Rochester.

Erratum. In the illustration accompanying the review of Valentin Bost's "Newton and Rusi" (11 May, p. 624), the drawings designated "Left" and "Right" were interchanged. The three drawings that appear at the right represent the "Newtonian-Gregor-Lomon.-tubus" and the one at the left represents the "tubus naptocyticus modos Lomonosov-Newton."