Idid 500 radioimmunoassays while I slept

The big, 500-sample capacity of the LKB-Wallac Automatic Gamma Sample Counter means that you, too, could set up for long uninterrupted runs overnight or on weekends. Come back in the morning and find a complete printout of results in digital form, with every sample positively identified. And with sample transfer taking as little as 10 seconds, you get fast results.

The LKB-Wallac Gamma Counter is simple to operate. You will be able to handle a high volume of samples for radioimmunoassays with a minimum of effort and at low cost. Samples can be added or removed from the counter at any time, without interrupting the run. They will always be positively identified. And you can add a binary-coded cap when you need to identify the samples of multi-users, or to give a command to your computer to select a certain program for processing the data from a group of samples.

Write now for information about LKB-Wallac Gamma Counters for either 300 or 500 samples, with one or two channels, for single or dual labelled samples.
SUMMER PASTIME FOR ACTIVE CHILDREN

The how and why of science is always stimulating to the inquiring minds of children, and THINGS of science is just the "thing" to help satisfy this curiosity and search for knowledge. THINGS of science kits contain an explanatory booklet and simple materials for easy-to-do experiments that make science a "fun activity."

The kits are designed for young people from 10 to 16, but many parents buy them for interested younger children. They are ideal for an afternoon project, scout meetings, neighborhood clubs and playground activities.

Illustrated on this page are THINGS of science kits, normally obtained on a subscription basis, now being offered as a summer special at $1.00 each or three for $2.50 while the supply lasts.

THINGS of science, Dept. SC-3
1719 N Street, N.W.
Washington, D.C. 20036

Please send the THINGS of science kit(s) I have checked. My payment in the amount of $________ is enclosed.

NAME __________________________

ADDRESS __________________________

CITY __________________________

STATE _______ ZIP __________

☐ Solar Energy ☐ Chemical Models ☐ Metric System
☐ Liquid Crystals ☐ Mathematical Mechanisms
☐ Seashells ☐ Stars and Constellations ☐ Touch
☐ Jars and Bottles ☐ Recycling ☐ Life Cycle of a Can
"There is no energy crisis."

The Book:

ENERGY AND THE FUTURE, a new and authoritative AAAAS book, takes a long-range look at energy. Based in part on the recent series in Science, this book surveys current and future sources of energy and describes the relevant technologies. It also assesses their potential environmental problems and identifies the technical obstacles to their development. The broad scope and balanced perspective of Energy and the Future make it a valuable resource for anyone wishing to explore the scientific and technological basis of the energy dilemma.

$3.95 ($2.95 Members' Price) Paperbound
$7.95 ($6.95 Members' Price) Casebound

Order Form

Please send me ___ copies of the book Energy and the Future at $3.95 per copy ($2.95 for members).

As a special introductory offer, the book Energy and the Future will be sent free to those who purchase the audiotapes.

The book Energy and the Future is also available in hard cover edition at $7.95 per copy ($6.95 for members).

Please send me ___ sets of Energy: A Dialogue at $39.95 per set ($34.95 for AAAS members).

□ Check enclosed □ Please bill me
(Member orders must be accompanied by remittance.)

Name ____________________________
Address __________________________
City ___________________ State _____ Zip _____

Send to: American Association for the Advancement of Science Dept. H - 1515 Massachusetts Avenue, N.W. Washington, D.C. 20005
There is an energy crisis.

The Tapes:

Edited and produced by Norman Metzger

Energy: A Dialogue, is a series of 12 audiotapes dealing in depth with the energy dilemmas we now face in the United States. They were created from long hours of interviews with people in this country who know about the energy problem. The series focuses on three major themes: The energy crisis, what it is and how it got that way; the technological options and their relative merits; and the interrelationship of energy with life styles, environment, population, resources, trade policy, politics and the family budget.

$39.95 ($34.95 Members' Price)
Herbicide Orange Surplus

I would like to provide an addendum to Deborah Shapley’s report “Herbicides: Agent Orange stockpile may go to the South Americans” (News and Comment, 6 Apr., p. 43).

IRI Research Institute’s (1) interest in herbicides and brush control problems dates back nearly 20 years. A brush control project was initiated in 1954 at the request of Brazilian farmers, whose pastures were being invaded and overrun by noxious species of tropical brush including indigenous poisonous species. Experimental work was initiated to control a number of these species of brush such as “Leiteiro” (Tabernaemontanum fuchsiæfolia) and “Amendoim” (Pterogyne nitens), and more than 2000 field plots were established in Brazil and Venezuela. The results of these studies and observations were published in four different bulletins and technical notes in English, Portuguese, and Spanish (2).

The basic ingredients of Herbicide Orange, 2,4-D and 2,4,5-T, have been sold and used commercially in Latin America for more than 20 years. These chemicals have controlled brush well in field applications and have improved pastures. However, their high cost has limited their use, and the surplus Herbicide Orange offers an opportunity to make some substantial improvements in pastures and livestock production at a significant saving to livestock producers.

There is a potential health hazard with the use of all agricultural chemicals. However, the possible hazard depends largely on how and where they are applied. The military applications of herbicides are reported to have been in the range of 27 pounds per acre, whereas the recommended applications to control pasture brush would be about 1 pound of 2,4,5-T per acre. Thus, the dosages are not comparable. Even common table salt can be a toxic and poisonous substance if taken at sufficiently high dosages.

It was found in the experimental studies that the most effective brush control in the tropics was obtained when herbicides were applied during the warm, wet season. These conditions are optimal for accelerated biodegradation, which would minimize the residue problem. Also it was found that the best results were obtained when animals were kept out of the sprayed pastures for 3 or 4 months following any spray application. When the pasture grasses are not grazed and allowed to grow vigorously, they provide a type of biological control against the resprouting noxious brush species. Thus, by following these two procedures, there is only a minimum possibility that toxic materials will build up in the food chain.

The livestock industry in Latin America is located largely in remote areas and requires very little labor. Thus the potential human exposure in the field is at a minimum. To our knowledge there have been no injurious effects to men or animals resulting from the field application of these herbicides in Latin America.

If it is recognized that there are potential risks in the use of Herbicide Orange, the decision to use it is essentially a problem of balancing the risks against the benefits. Any risks can be minimized by proper handling and application. The proposed project includes an extensive educational and demonstration program to assure proper handling. A realistic value judgment overwhelmingly indicates that the results of the proper application of Herbicide Orange would be favorable.

Jerome F. Harrington
IRI Research Institute, Inc., One Rockefeller Plaza, New York 10020

References and Notes
1. IRI is a nonprofit organization founded in 1950. The name was changed in 1963 from IBEC Research Institute to IRI Research Institute, Inc.

Energy Policy

In the issue of 23 February, excerpts from a speech by S. David Freeman are presented (News and Comment, p. 779) in which “solutions” to the energy crisis are proposed.

Freeman’s major thesis is that ending the import restrictions on energy fuels would alleviate the energy short-
age that some parts of the United States experienced during the winter and that the entire country faces in the future. The picture of cheaper energy flowing into the United States from foreign sources sounds inviting but is fraught with problems. First, increased dependence on foreign energy sources requires deep-water ports and better distribution facilities to move the oil or gas from the coasts to the centers of population. Neither of these presently exist, and both are opposed by various environmentalist groups.

A stepped-up American demand for foreign oil is certain to raise the price paid by consumers in Japan and Europe as well. An organization of oil-producing nations already exists that has at least once forced renegotiation of contracts and higher prices. What added purchases would do to our balance-of-payments deficit is another consideration.

The suggestion that abandoning wasteful patterns of energy consumption as a short-term solution to the problem is sheer folly. However deplorable these policies may be, they will not change quickly. They are ingrained in the very operation of our society, and consumers will require extensive education and redirection to change. This is not even considering the cost of alternatives to millions of cars and brilliantly lighted cities. Changes such as these have seldom, if ever, happened quickly in the past, although they may be long-term considerations.

The controversy over the fairness of profits that may result if domestic oil prices are increased and controls removed from natural gas requires detailed examination. Certainly the position of the oil industry on the matter must be looked at critically. An interesting article diametrically opposed to Freeman's view appears in the newsletter of the Oil and Gas Journal of 5 February 1973 (1).

To suggest that the energy problem can be so easily solved seems to ignore too much. If it were so, there probably would not be an impending crisis in the first place.

It does not seem realistic to deplore runaway consumption while attempting to supply cheap energy by any method, either by holding prices artificially low or by increasing imports. It seems almost certain that energy will cost more in the future, and a large share of the cost will be borne by the consumer, for without the demand there would be less of a problem. Maybe in the end that is the only way our wasteful consumption habits will be changed.

Ronald D. Stieglitz
Ohio Department of Natural Resources,
Division of Geological Survey.
Columbus 43212

References

The Speed of Light

Without wishing to detract from Evenson's new determination of the speed of light (W. D. Metz, Research News, 16 Feb., p. 670), I think the example used to illustrate its importance was ill-advised. The improved value for the speed of light is no more important in laser ranging now than it was 3 years ago, when this topic was discussed by Bender (1), who wrote "there are no important scientific experiments which we are prevented from doing" by the adoption of the conventional value of the speed of light.

The confusion seems to stem from a failure to appreciate the fact that the natural unit of astronomical measurement is the light-second, as is the case with nearly all measures of large terrestrial distances. The only purpose of converting light-seconds into kilometers is a psychological one. People do not like to think of the coordinates of an observatory or the distance between two cities in terms of light-seconds. Similarly, astronomical ephemeredies are constructed in terms of astronomical units because an astronomer seems to feel that he can visualize an astronomical unit more readily than he can visualize 500 light-seconds. We are dealing with the inertia of heritage.

The change from one adopted value for the speed of light to another in astronomical problems is simply a linear change of scale. It does not involve a change in physical model. In more concrete terms, the distance to the moon, as stated in linear measure, will change, but the residuals between observation and prediction will not. In terms of the physics of the problem, the new determination of the speed of light may be expected to have no more serious consequences than did the redefinition of the conversion factor between inches and meters some years ago. In this context, the only substantive question is, What is the measure of the standard meter bar in light-seconds?
AAAS - WESTINGHOUSE
SCIENCE WRITING AWARDS
1973

To encourage and recognize outstanding writing on the natural sciences and their engineering and technological applications (excluding medicine) in newspapers and general circulation magazines.

Three awards of $1,000 each for science writing in newspapers with daily circulation of more than 100,000; in newspapers with daily circulation of less than 100,000 and in general circulation magazines.

Contest year.

Material must have been published within the United States, October 1, 1972 thru November 30, 1973.