Over 25 years ago LKB was designing and building instruments for nuclear research. In fact, one of the earliest instruments developed for advanced work in the nuclear field was LKB’s 200 million electron-volt synchrocyclotron, installed at Uppsala University in 1947.

Since that time LKB has always been in the forefront with equipment for tracing and counting radioactive isotopes in the clinical field. Some of the LKB innovations of earlier years: whole-body scanners for radioactive tracing in human patients; beta-comparators; scalers, counters and automatic sample-changers; and radio-chromatogram scanners. This wealth of nuclear experience stands behind the current range of LKB-Wallac Gamma and Liquid Scintillation Counters.

The Only Gamma Systems With A Full 2 YEAR WARRANTY!
A verbal montage of the state of science in the 70's

"Science is a constantly changing series of approximations," a scientist-philosopher pointed out.

Thus, each of the 36 interviews between scientists and journalists is a snapshot of a particular science at a particular time. But, summed up, these interviews offer a verbal montage of the state of science in the early seventies: progress in genetics, the difficulties of finding technological answers to natural disasters such as earthquakes, volcanoes, and hurricanes; the pulsating need to explore the worlds beyond—Mars, cosmic puzzles such as pulsars, the oceans. We continue to probe ourselves—the basis of our violent behavior, our evolution, the nurturing of our young...

Each of these interviews—like fragments of a jigsaw puzzle—tells little. Assembled, they give a panorama of science that is revealing of its depth, its breadth, and its dynamic state.

1. Discovering Mars
2. Evolution and the Descent of Man
3. Advances in the Behavioral Sciences
4. What is Needed for Peace?
5. Health Care and Delivery
6. Advances in the Physical and Life Sciences
7. Advances in the Ocean Sciences
8. Public Understanding of Science
9. Technology Today
10. The Finite Earth
11. Advances in Astronomy
12. Noise and Music

1. The Dilemma of Prisons
2. Science and Sociology of Weather Modification
3. New Dimensions in Human Genetics
4. Children and Environment: A New View
5. Energy Rationing
6. Forest Ecology and Management
7. Environment and Cancer
8. Patterns of Discovery
9. The Limits of Growth: A Debate
10. Tragedy of the Commons Revisited
11. Understanding Perception
12. Exploring the Universe

1. Eluding the Energy Trap
2. The Earth's Fire
3. Science, Development, and Human Values
4. Technological Shock
5. Population Policy and Human Development
6. Earthquakes: Managua and Beyond
7. Volcanoes
8. Hurricanes
9. Malnutrition: A Medical and Economic View
10. The Green Revolution: An Assessment
11. Legend and Science in the Early Americas
12. The Science of Violence

Each of the three Speaking of Science volumes includes six one hour audiotapes, packaged in an attractive album and accompanied by a booklet with background on each conversation. Cost of all three volumes, with slipcase, is $84.95 to AAAS members; $99.95 to nonmembers. Volume I, 1972, Volume II, 1973, and Volume III, 1973 are available separately at $34.95 each to AAAS members, and $39.95 to nonmembers. (Both prices plus $1.50 postage and handling.)

Please send me ______ 3 set albums of Speaking of Science Volume ______ at $39.95 each; $44.95 for AAAS members. (Both plus $1.50 postage and handling.)

Please send me _____ albums of Speaking of Science Volume ______ at $39.95 each; $44.95 for AAAS members. (Both plus $1.50 postage and handling.)

[Signature]

[Address]

[City, state & zip]

American Association For the Advancement of Science
1515 Massachusetts Ave., N.W.
Washington, D.C. 20005
Dept. S-3
Dually labeled*

dGTP [8,5'-³H(N)]
37.0 Curies/mmole
*base [8-³H] deoxyribose [5'-³H]

joins our family of Highest Specific Activity Deoxyribonucleotides

Deoxyribonucleotides [³H]

- Deoxyadenosine 5'-triphosphate, tetrasodium salt [³H(G)]
 NET-268 10-20Ci/mmole available from stock

- Deoxycytidine 5'-triphosphate, tetrasodium salt [5-³H]
 NET-369 15-30Ci/mmole available from stock

- Deoxyguanosine 5'-triphosphate, tetrasodium salt [8,5'-³H(N)]
 NET-448 25-40Ci/mmole available from stock

- Deoxyguanosine 5'-triphosphate, tetrasodium salt [8-³H(N)]
 NET-429 5-15Ci/mmole available from stock

- Deoxythymidine 5'-triphosphate, tetrasodium salt [methyl-³H]
 NET-221H 10-20Ci/mmole available from stock

- Deoxythymidine 5'-triphosphate, tetrasodium salt [methyl-³H]
 NET-221X 40-60Ci/mmole available from stock

Deoxyribonucleotides [α-³²P]

- Deoxyadenosine 5'-triphosphate, tetra (triethylammonium) salt [α-³²P]
 NEG-012 2-20Ci/mmole available from stock

- Deoxycytidine 5'-triphosphate, tetra (triethylammonium) salt [α-³²P]
 NEG-013 2-20Ci/mmole available from stock

- Deoxyguanosine 5'-triphosphate, tetra (triethylammonium) salt [α-³²P]
 NEG-014 2-20Ci/mmole available from stock

- Deoxythymidine 5'-triphosphate, tetra (triethylammonium) salt [α-³²P]
 NEG-005 2-20Ci/mmole available from stock

Call Customer Service for complete ordering information.

New England Nuclear
575 Albany Street, Boston, Massachusetts 02118
Customer Service 617-482-9595

Canada: NEN Canada Ltd. Dorval Quebec H9P 1B3 Tel (514) 636-4971 Telex 05-821808
Europe: NEN-Chemicals GmbH D6072 Dreieichhain, Semensstrasse 1 W Germany Tel Langer (06103) 85036
This dye can now be ordered as EASTMAN 14014.* A report in *Nature New Biology* 241: 159 (1973) tells how a group at Yale stained giant axon from squid with it, illuminated at 540 nm, and recorded fluorescence redward of 590 nm in response to electrical stimuli. The fluorescence lagged the action potential by less than 50 μsec. With good linearity found between the fluorescence intensity and the potential as measured with an internal electrode in the axon, optimism is expressed that electrodes may no longer be needed to pick up membrane potential spikes. We hope this is no flash in the pan.

What happened

Contact was initiated by L. B. Cohen, Department of Physiology, Yale University School of Medicine. He had heard that at the Kodak Research Laboratories new dye molecules are constantly being designed and constructed. According to the tales one hears, we have been putting together a few new dyes each working day for the past 50 years. Suspecting that such tales are not altogether apocryphal, Cohen told the Kodak Research Laboratories what he wanted a dye to do and asked that it be provided to him. Just like that.

Inexplicably, a warm, cordial letter informing Doctor Cohen that the Laboratories do not operate that way failed to go out. Instead, our D. W. Heseltine, a leading molecular architect, found himself contemplating Cohen's request. To which he responded thus:

```
\[
\begin{align*}
\text{O} & \quad \text{(CH}_2\text{)}_3 \quad \text{O} \\
\text{C} & \quad \text{CH} \quad \text{CH} \quad \text{CH} \quad \text{CH} \\
\text{S} & \quad \text{C} \\
\text{Na} & \quad \text{(CH}_2\text{)}_3 \quad \text{CH} \\
\end{align*}
\]
```

Just like that. Zap. Call it Merocyanine 540. After a decent interval, dark crystals of Merocyanine 540 arrived in New Haven, where Cohen in company with H. V. Davila, B. M. Salzberg, and A. S. Waggoner got it into their seawater at a final dye concentration of 0.05 mg/ml, with 1% ethanol and 0.025% surfactant polyol.

There is reason to brag. The spike of intensity increase above resting fluorescence is five times larger than the authors had seen with any of over 150 dyes before Merocyanine 540. There is also reason to be modest: that great spike represents a change in resting fluorescence of about one part in 10^5. Perhaps if Heseltine had worked harder, that 10^5 might have been 10^2, or 5% or even 20%. The thought nags.

Perhaps a better fluorochrome than Merocyanine 540 might turn up in a large paper bag of hundreds of little vials of dye samples from Heseltine's shelves. Reasons why a business executive, accountant, or lawyer might turn down a neurophysiologist's request for such a bag would not be well understood by the neurophysiologist. For screening at the seashore by the great axon of *Loligo pealii*, Cohen et al want many more dyes than the mere 15 Heseltine sent after Merocyanine 540. None of them was as good. Like Merocyanine 540, they had been designed for another purpose. Now the purposes of the neurophysiological laboratory interest Heseltine.

Since long before molecular biology turned on the light of fluorescence to see by, we have been marketing biological stains. With changes in the textile-dye industry, we have had to start making many a dye that we formerly were able to buy and have certified for laboratory use. As a result, quality is up. We do seek opportunity to put our competence with dyes at the service of the life scientist. Inquiries should impart nothing confidential, should be directed to G. S. Grau, Dept. 742B, Kodak, Rochester, N. Y. 14650 (not to the Kodak Research Laboratories!), and might say something like, "Your EASTMAN XXXXX is fine as far as it goes, but what I and my buddies really want to buy for money is []"

For starters, here is a list of EASTMAN Organic Chemicals believed to shine forth in some useful way as fluorescent probes or fluorescent stains for proteins:

| EASTMAN No. | Acridine Orange | 8-Anilino-1-naphthalenesulfonic Acid | 8-Anilino-1-naphthalenesulfonic Acid Sodium Salt (Tech.) | 8-Anilino-1-naphthalenesulfonic Acid Magnesium Salt | 8-Anilino-1-naphthalenesulfonic Acid Ammonium Salt | N-[p-(2-Benzoxazolyl)phenyl]maleimide | 4-Chloro-7-nitrobenzo-2-oxa-1,3-diazole | 5-Dimethylamino-1-naphthalenesulfonic Acid | 5-Dimethylamino-1-naphthalenesulfonic Acid Sodium Salt | 5(6)-Rhodamine Chloride | 5-Dimethylamino-1-naphthalenesulfonic Acid | N,N'-Diocetyldecylcarboxycyanine p-Toluenesulfonate | 5-Fluorescein Isothiocyanate (Cert.) | 8-Hydroxy-1,3,6-pyrenetrisulfonic Acid Trisodium Salt (Pract.) | 9-Isothiocyanatoacridine | 3-Isothiocyanato-1,5-naphthalenedisulfonic Acid Disodium Salt | Lissamine Rhodamine B Sulfonyl Chloride | Merocyanine 540 | 7-(p-Methoxybenzylamino)-4-nitrobenz-2-oxa-1,3-diazole | 1-Pyrenebutyric Acid | 5(6)-Rhodamine B Isothiocyanate | Rose Bengal (Cert.) | 6-p-Toluidino-2-naphthalenesulfonic Acid | 6-p-Toluidino-1-naphthalenesulfonic Acid | 6-p-Toluidino-1-naphthalenesulfonic Acid Sodium Salt |
| 1757 | 10296 | 10990 | 11512 | 11128 | 11502 | 11514 | 11313 | 11134 | 11128 | 11218 | 11808 | 11066 | 10728 | 11615 | 11970 | 11886 | 14014 | 11829 | 6566 | 11439 | C2245 | 10613 | 10591 | 11002 |

From a lab supply house, or at $38.50 for 1 g from Kodak, Organic Chemical Sales, Rochester, N. Y. 14650. Price subject to change without notice.