Four new reasons to buy a Beckman L-5 Ultracentrifuge.

You're looking at another area of Beckman leadership: rotors. As an L-5 owner, you have more than 30 fixed-angle, swinging-bucket, zonal, and continuous-flow rotors to choose from—all part of our continuing rotor development program. These four new titanium rotors offer extraordinary combinations of force and volume for hard-to-sediment materials.

The 70-Ti in foreground generates a half million g's and holds 300 ml—almost three times the sample volume of our other half-million-g rotor.

The 50.2-Ti at left spins just under a half liter of sample at forces to 300,000 g at its maximum speed of 50,000 rpm.

The new SW-60-Ti swinging-bucket rotor produces significantly greater force than our previous highest-force SW rotor (485,000 vs 420,000 g)—yet holds almost twice the sample volume.

The Z-60 rotor raises the force available with zonal rotors to 256,000 g—50% higher than the Ti-14 zonal rotor—to speed up the processing of proteins, hormones, and enzymes.

We've been designing high force rotors and ultracentrifuges for a long time. So it's no wonder that Beckman centrifugal equipment is the most advanced and most reliable in the world.

For literature on the L-5's and their extensive line of rotors, write for brochure SB-400 to Beckman Instruments, Inc., Spinco Division, 1117 California Avenue, Palo Alto, CA 94304.

Circle No. 360 on Readers' Service Card
THE NEW EASTMAN ORGANIC CHEMICALS CATALOG, NUMBER 47.

332 pages of data on nearly 6,000 EASTMAN Organic Chemicals

- Structural formulas illustrated for more than 1,000 of the chemicals.
- A functional group listing.
- Color coding on all pages to help you find what you need fast.
- Reader service postcards enabling you to request additional literature, quotes on bulk and custom chemicals, and other information.
- Details on the EASTMAN Dataservice Publications Program and how you can participate in it.

This new catalog has been sent to everyone on our mailing list. If you don’t yet have a copy, we probably don’t have your name. To request your own copy, simply return the coupon.

Eastman Kodak Company
Eastman Organic Chemicals
Dept 412L
Rochester, N.Y. 14650

Please send a copy of EASTMAN Organic Chemicals Catalog No. 47 to:

Name
Affiliation
Address
City State Zip

Circle No. 309 on Readers' Service Card
The OTD-2 Ultracentrifuge runs smoothly to give you sharp protein peaks.

With the OTD-2, you get excellent separations of proteins which have similar sedimentation coefficients. The OTD-2 has an exclusive oil turbine drive which starts smoothly, runs smoothly, stops smoothly. The precise separations achieved during ultracentrifugation are retained, because "stirback" is eliminated.

The OTD-2 can be programmed to start and stop gradually in minutes, not seconds, smoothing out the critical speeds below 1000 RPM, when "stirback" occurs . . . especially important for critical density gradient separations.

The sample of human blood plasma shown in the chart clearly shows sharp protein peaks at points A and C, and indicates additional proteins at points B and D . . . peaks not normally visible with ultracentrifugation.

These data were obtained in our laboratory. They are readily obtainable in any lab which has an OTD-2.

For more information on how the OTD-2 can give you sharp protein peaks, write to Du Pont Instruments, Biomedical Division, Room 23703B, Newtown, CT 06470.

Circle No. 130 on Readers’ Service Card

<table>
<thead>
<tr>
<th>Estimated "S" values at indicated densities</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>P 1.3</td>
</tr>
<tr>
<td>P 1.4</td>
</tr>
</tbody>
</table>

Sample: Normal Human Plasma
Gradient: 5 to 20% Sucrose
Tamp: +5°C
RPM: 56,000
Time: 17 Hours
When did you last have a meaningful conversation with your computer?

It is easy to talk to the Wang 2200S, the computer with a difference. The Wang System 2200S is built for the engineer, for the research specialist, for the statistician, for the mathematician, for the educator, who needs an economical yet powerful computing system, accessible when he needs it, where he needs it.

Touch, see, converse. The Wang 2200S responds to you at the touch of a key. You converse with it through a TV-like screen. In BASIC, an almost literal computer language. Powerful yet simple to use, BASIC and the "touch a key" approach give you the convenience of a calculator and the performance of a computer.

You will find the Wang 2200S completely interactive, with absolute simplicity of programming, editing and debugging. Renumber a program in increments you determine. Alter, insert, delete as you choose. Pinpoint and identify syntax errors. Automatically.

Buy computer power at calculator price. Pick your Wang 2200S system with the memory size you need. Buy now what you need now and add later what you need later. And most important: The Wang 2200S gives you computer power at the price of a programmable calculator.

You can trust us. Wang developed the small computers and has installed thousands of them, all over the world. Wang has more than 150 offices in the U.S. and 50 foreign countries.

WANG Laboratories, Inc.,
836 North St., Tewksbury, Ma. 01876, Tel. (617) 851-4111

WANG Europe S.A.,
Buurtweg 13, 9412 Ottergem, Belgium, Tel. 053/704514

Our business is to provide solutions where they are needed.
Our ULTRA-Low temperature equipment is now listed by UNDERWRITERS' LABORATORIES, INC.

Another industry first from Revco—the pacesetter for over 36 years. Because we care about your safety, our freezers in their entirety—not just components—are now UNDERWRITERS' LABORATORIES, INC. LISTED. When you specify Revco, you've bought the best.
ULTimate Safeguard

ULT 975, 985, & 9100—Capacity of 9 cu. ft. (255 liters). Pulldowns from 75°C/-103°F to -100°C/-148°F. Floor space: 11.6 sq. ft. Listed

ULT 1145, 1175 & 2235—Space-saving uprights. Pulldowns from -35°C/-31°F to -75°C/-103°F. Revco's 'tall cold ones' have capacities from 11 to 22 cu. ft. Floor space: 6.6 sq. ft.

ULT 1260, 1275, 1280, 1285 & 12100—Capacity of 12.3 cu. ft. (349 liters). Pulldowns from -60°C/-76°F to -100°C/-148°F. Floor space: 11.6 sq. ft. Listed

ULT 1760 & 1785—Capacity of 17 cu. ft. (483 liters). Pulldowns from -60°C/-76°F to -85°C/-121°F. Floor space: 14 sq. ft. Listed

ULT 1535, 2035 & 2435—Pulldown of -35°C/-31°F with capacities of 14.7, 20.0 and 24.7 cu. ft. Listed

VOLTAGE SAFEGUARD—protects all your valuable electrical equipment by boosting voltage, e.g., prevents possible compressor damage in event of brownout. Simple to operate—just plug in. Compact—less than one cu. ft.

For more information on Revco uprights, chest freezers, and nation-wide service centers write for our latest catalog, or contact: Curtin-Matheson, Fisher Scientific, Scientific Products, VWR. In Canada: Allied Scientific, Can Lab, Fisher Scientific.

REVCO, INC.
1100 Memorial Drive, West Columbia, S.C. 29169
Telephone: 803/796-1700 TWX: 810-666-2103
Cable: Revco

Circle No. 179 on Readers' Service Card
Emarrass Your Spectrophotometer.

Ask it these 3 questions.

Q1: Can it cope with today's stringent regulations?

Analytical chemistry is changing rapidly. Gratings have replaced prisms and meters have given way to digital readout. Not so long ago, a 35 nm band-pass was considered adequate...2 nm is now routine. Low stray light specifications — once overlooked — are now recognized as being crucial to accurate quantitative measurements.

Can you count on your spectrophotometer for results that satisfy the latest federal regulations?

Consider the Perkin-Elmer Model 55 UV-VIS spectrophotometer. It gives you a 2 nm band-pass, 0-3A with photometric accuracy checked against NBS standards and stray light of less than 0.05%T at 340 nm. All at a price that's hard to beat.

Q2: How accommodating is the sample compartment?

Many of today's measurements require thermostatted cells, long path cells and multiple cell holders. Can your spectrophotometer handle all these, or are you limited to test tubes?

The Model 55's sample compartment can hold single cells from 2 to 100 mm or five 10 mm cells at the same time. In addition, a focused beam at the sample point provides an optimum environment for micro-sampling.

Can your spectrophotometer answer these questions to your satisfaction? If not, consider the Perkin-Elmer Model 55. It gives you all the advantages mentioned above and more...including wavelength range of 200-800 nm, digital readout in Abs., Conc. and %T. With its 2 nm band-pass, the Model 55 is equally at home in both the UV and visible ranges.

Whether you use it for routine quantitative work, enzymes, trace analysis or as a liquid chromatography detector, the Model 55 gives you more right answers for the money. For complete information, just write or call: Perkin-Elmer Corporation, Coleman Instruments Division, 2000 York Road, Oak Brook, IL 60521; phone (312) 887-0770.

Q3: Are noisy digits and drifting meters affecting precision?

Noise limits scale expansion, creates uncertainty in the data and impairs measurements in trace analyses and highly concentrated samples.

At low concentration you should be able to detect the sample. At high absorbance you should still be able to monitor small changes. Can you really trust your spectrophotometer to handle the variety of samples you receive, with the accuracy today's standards demand?

Consider the Model 55 which typically has a 2000:1 signal-to-noise ratio at 2A; plus scale expansion up to 10X in concentration and long term drift of only .005A/8 hrs.

PERKIN-ELMER

Circle No. 218 on Readers' Service Card
Routine and Laboratory Microscopes

After half a century of excellent service to medical laboratories and teaching institutions in Europe, the quality instruments made by WILL Wetzlar of West Germany are now available in North America. This all-new line of fine microscopes offers American science industry the best of German optics and mechanics at competitive prices.

These high-performance instruments have been manufactured to traditional standards of quality. They feature trouble-free use and ease of operation, ideal for hours-long use without fatigue. They are supplemented with a large number of practical accessories and are adaptable for many applications.

The instrument shown—the Vb 165—is typical of the new "V" conception developed by Wilhelm Will KG after years of concentrated research in cooperation with the Folkwangschule in Essen, responsible for its design. This microscope extends the standard of laboratory microscope to all known methods undertaken today.

For further information and current price list, write now to: WILL Wetzlar, Inc.
615 South Stonestreet Avenue, Rockville, Maryland 20850
or call (301) 762-2300

Circle No. 391 on Readers' Service Card
in the Sargent-Welch tradition of fine recorders...

model xkr

1975

- 250 mm (9.83 in) Chart
- Single or 9-Speed Drive
- Half-second Pen Response
- Metric Calibration
- 1, 2, 5 & 10 or 10, 20, 50 & 100 mV Spans
- Compact — 17 x 44 x 40 cm
- High Impact Cycolac T® Case
- Price Range — $495.00 to $700.00

1956

1959

1963

1967

Sargent-Welch Scientific Company
7300 North Linder Avenue
Skokie, Illinois 60076
(312) 677-0600

Anaheim • Birmingham • Chicago • Cincinnati • Cleveland • Dallas • Denver • Detroit • Springfield, N.J. • Toronto • Montreal

Circle No. 69 on Readers' Service Card
a bird with a humerus length of 52 cm would have a wingspan of 523 cm, whereas
P. antiquus, had it ever attained this humerus size, would have had a 1019-cm wingspan,
and Pteranodon would have had a 1241-cm wingspan.

The Texas pterosaur, hereafter to be referred to as Quetzalcoatlus northropi, is represented by the type Texas Memorial Museum No. 41450-3, which consists of a left humerus and partial radius, ulna, proximal and distal carpals, metacarpal, and first and second phalanges of the fourth digit. An approximate regression equation for the relation of its wingspan to its humerus length

\[W = 29.70H^{0.016} \]

can be based on a more nearly complete, smaller specimen of the same species and on the regression coefficient of Pteranodon. The solution of this equation for a humerus of 52 cm gives a wingspan of approximately 1600 cm.

As for the relation between mass and wingspan, Bramwell and Whitfield (3) list five estimates for the mass of Pteranodon with a wingspan of 6.95 meters that range from 12.9 to 29.8 kilograms. These estimates are based on attempts to flesh out the animal, not on a calculated relation between mass and wingspan. However, using Greenewalt’s (4) equation for the relation between mass and wingspan in birds and insects

\[W = cl^3 \]

where \(W \) is weight, \(l \) is the length of the arm, and \(c \) is a constant of proportionality, the mass of a bird with a wingspan of 695 cm would be 100 kg, and for a bird with a wingspan of 1500 cm, it would be 440 kg. Once again, the relation between some anatomical feature and wingspan does not seem to have been the same in pterosaurs as it is in birds. Both of these departures from the relation seen in birds ultimately reflect the differences in mode of locomotion. It seems that, although study of present-day flying creatures provides insight into possible structural solutions to a common problem, it does not dictate that a particular solution must be practiced by all flying creatures.

DOUGLAS A. LAWSON
Department of Paleontology,
University of California,
Berkeley 94720

Sea-Floor Exploration

In the otherwise excellent article by Allen Hammond, “Submersibles: A research technology whose time has come?” (Research News, 7 Mar., p. 824), one error should be corrected. Hammond remarks that “even ordinary echo-sounding gear is almost nonexistent on most university-operated research ships.” As best as I can determine, every U.S. university-operated research ship (baring rowboats) can boast an “ordinary” echo sounder adequate to determine depth on the continental shelf. All of the “blue-water” oceanographic ships in the University-National Oceanographic Laboratory System have at least one precision deep-water sounding system capable of determining the water depth to an accuracy of 1 fathom. Most have more than one system. What they don’t have are “extraordinary” systems with multiple, high-power, directionally stabilized, narrow-beam transducers designed to make a strip of the bottom rather than a line at one pass. The Navy has a few of these.

U.S. academic research ships are currently suffering from a whole set of problems caused by rapidly escalating costs, limited funding, expanded claims of jurisdiction by coastal states, and a maze of red tape, but they are not in as bad shape as Hammond implies.

GEORGE G. SHOR, JR.
University-National Oceanographic Laboratory System,
La Jolla, California 92037

DOD Sponsored Research

In the article “Department of Defense R & D in the university” (22 Nov. 1974, p. 706) by Stanton A. Glantz and Norm V. Albers, my response to a DDC (Defense Documentation Center) statement was presented as evidence of “Two different perceptions” of DOD (Department of Defense) sponsored research. It is a pity that the authors used this as an example, since my strong response was due to a misreading of the DDC statement. While the authors were very open in preparing the material included in volume 1 of their Stanford report (1), they used extreme secrecy in preparing volume 2 (2), upon which much of their Science article is based. As a result, I was not able to correct my error until after the report was published and issued to the public late in 1971. Early in 1972, the Stanford Workshop on Political and Social Issues (SWOPSI) policy board approved an addendum to the report giving this correction and the reasons for it. Part of this addendum is included as refer-
Save up to $1400!

We've cut calculator costs and slashed memory options by half!

Tektronix' new E31 Programmable Calculator is just one way our new products and price changes add up.

Our new E31 Programmable Calculator closely parallels the popular 31. It has all the efficient, problem-solving features of the 31: 35 built-in math functions; 24 user-definable keys; complete alphanumerics; and a natural math hierarchy that thinks the way you do.

The E31 is designed as a high-powered stand-alone unit, without I/O add-on capacity. It's designed to save many calculator users a lot of dollars: at $2495*, it's $355 cheaper than the 31.

Bigger savings on the smaller 21. Catalog price on the original 21 model was $1850. Now we give you the same machine, including the $450 numeric thermal printer, for $1300—a savings of over 40%!

Maybe this will improve your memory: our two memory expansions for the 21, and nine memory options for the E31, 31, and 31 calculator systems, are all selling for half their catalog price. You save from $125 on the 256-step 21 Expansion Pack, to $1400 on the giant 8192-step, 256-register option for the 31, 31/10 graphic calculator, or 31/53 calculator instrumentation system.

If you've been struggling to keep the bottom line of your budget in black ink, now you can have it both ways: great Tektronix technology, and inflation-fighting bargains like you've never seen before. Call your Tektronix Sales Engineer. He'll be happy to show them up close. Or write:

*All prices domestic USA only.

Tektronix, Inc.
Information Display Division
P.O. Box 500
Beaverton, Oregon 97077

Circle No. 305 on Readers' Service Card
ence 29 in the Science article; however, the authors did not make it clear, as did the addendum, that the original statement was based on my misreading of the DDC statement and that the statement in reference 29 should be substituted for the earlier statement used by the authors.

W. E. Spicer
Department of Electrical Engineering and Material Science, Stanford University, Stanford, California 94305

References

Based on an analysis of 111 DOD research contracts with a university, Glantz and Albers write: “Our study demonstrated that the military had developed a rational, well-administered program to define research priorities in terms of current and projected military needs and to purchase R & D from universities based on these needs.” Their evidence for this conclusion consists of (i) the fact that DOD has a system for reviewing proposals; (ii) the fact that DOD has a list of needs; (iii) quotations from various DOD officials asserting that research is purchased in accordance with this list of needs; and (iv) the fact that there is a “DOD Defense Documentation Center” statement for each project which relates the project to the need.

Such evidence is weak. Most funding agencies, those both well and poorly administered, have a proposal review process, and most have a statement of needs. Assertions by interested parties that an agency is doing a good job are not usually regarded as reliable evidence. The existence of a summary statement for each project has little bearing on the question of whether the decision to support the project was a sound one.

One would suppose that a test of the hypothesis that DOD has a “rational, well administered program” would involve a comparison of the projects accepted with the projects that were not accepted; or a comparison of the state of the art in the United States with that in the Soviet Union; or interviews with knowledgeable, but uninvolved persons; or a comparison of DOD procedures with those in other agencies. No such tests were attempted.

What the article does show (despite an explicit statement to the contrary), is how DOD evades the Mansfield Amendment, which requires that DOD sponsored research be relevant to military needs. In the article, seven contracts are used as examples. Three of these relate to helicopters, and two relate to radar; their military relevance is obvious. The other two, however, have no demonstrated relationship to military needs at all.

It turns out that the “DDC statement” describing each project is not a part of the project proposal. It is not even written by the principal investigator. Rather, it is written by a DOD official, and it is written after the decision to recommend approval of the project has been made. Such statements are not convincing as support for the assertion that the DOD selects projects on the basis of their relevance to military needs.

Robert N. Anthony
Waterville Valley, New Hampshire 03223

Anthony fails to find our arguments convincing because he seems to believe that DOD, after reviewing academic proposals, invents a military need for the proposed work to fool Congress. This inverted perspective of DOD research and development comes from focusing on individual projects rather than looking for broad patterns of support. For example, taken together, Stanford’s contracts at the time of our study reflected programs to develop laser weapons, guided bombs, helicopters, and the electronic battlefield. Often people in different academic departments with no formal ties to each other worked on different aspects of these programs. Later, when we obtained research objectives and other documents from DOD, we could systematically match the university projects with the military programs that led to their being funded. These documents, written before proposals are reviewed, are used to help decide which contracts to let: we found that these documents outlined scientific objectives which, if reached, could reasonably be expected to help in attaining the stated military objectives. To establish that Stanford’s contracts were compatible with the military objectives they were let to meet, we studied each contract and found, on a technical basis, work consistent with the military objectives outlined in internal DOD documentation. The summary statements written by the contract monitors and available from the Defense Documentation Center (DDC) provided another check on the relationship between the contract work and the military’s needs. While these statements reflected a different perspective on the work than that of the principal investigator, we found them technically reasonable summaries of the work. Our conclusion that the DOD’s R & D program is rational and well administered follows from our independent assessment that its internal objectives documents are...
HEAT PRESSURE and STRONG ACIDS can be combined in the PARR® Acid Digestion Bomb to provide a rapid and safe method for dissolving glass, rocks, silicates and other refractory materials in HF, HCl, HNO₃ and other strong mineral acids.

Samples are held in a 25 ml, thick walled Teflon® cup which is not attacked by the acid charge. This cup is confined within a sturdy stainless steel bomb from which it is easily removed for sample recovery and washing. No wrenches or clamps are needed to produce a tight seal.

Ask for PARR Data Sheet 4745 describing this rapid method for dissolving difficult samples.

*DuPont TFE fluoroCarbon resin.

Pharmacia Peristaltic Pump P-3

A compact pump electronically controlled for constant liquid flows in chromatography and gradient formation.

You can
- obtain three different flow rates at the same time through the three individually tensioned pumping channels
- change tubes in seconds with the snap-in cassette
- forget about pulsation thanks to the large driven rollers
- rely on a constant motor speed, electronically compensated for load and temperature
- use any flow rate between 0.6 and 400 ml/h per channel with the same gear box
- reverse the flow instantly
- push for maximum flow and clear pump lines rapidly

For free descriptive literature, write or call:

Pharmacia Fine Chemicals Inc.
800 Centennial Avenue
Piscataway, New Jersey 08854
Phone (201) 469-1222

The publication in your hand contains current technical information of vital importance to your professional research. So does the Calbiochem catalog. Our editors strive to be informative, entertaining and brief in their uncluttered description of more than 2000 authentic research biochemicals. Calbiochem's publications and products are available from 9 offices and 50 local agents throughout the world. If you want a free subscription to our publications, send your name and professional address to Ms. H. Gone, c/o Calbiochem, P.O. Box 12087, San Diego, California 92112. Ask for our current catalog.
required reading
for better, faster chromographic separations

Consider Waters' library of liquid chromatography information your resource for solving separations problems. We've got factual, concise, and helpful monographs on a wide variety of topics. They are yours for the asking. Send for our complete Applications Index today. And if your separations problem is more pressing, give us a call; we'll do our best to help you.

from Waters/the Liquid Chromatography People

logically consistent from a military point of view and the fact that all the work at Stanford fits neatly into this logical structure.

Anthony incorrectly asserts that two of the contracts we cite in our paper have "no demonstrated relationship to military needs at all." The relationships for all the example contracts are as follows.

1) "Micropower Integrated Circuits": Army portable equipment, including specific communications; surveillance; countermeasures receivers; navigational, meteorological, command and control, and clandestine intelligence gathering equipment.

2) "Investigation and Development of Cryogenic Microwave Detectors, Nuclear Gyroscopes, Accelerometers and Magnetometers": Air Force tactical detection of trucks, weapons, other magnetic objects.

3) "Research on Aircraft Structural Analysis and Design": Army helicopter structures.

4) "Study of the Dynamics and Control of Rotary Wing VTOL Aircraft": Army helicopter guidance and stabilization.

5) "Basic Studies in Aerodynamic Noise": Army helicopter rotor noise.

6) "High Energy Physics": Cryogenic technology to permit more efficient electromagnetic devices on board Navy ships (1).

7) "Microwave Device Techniques for Aerospace Users": Air Force radar and electronic warfare.

8) "Research on Devices Using Acoustic Surface Waves": Navy radar and electronic warfare.

9) "Fundamental Investigation of Amorphous Semiconductors and Transition Metal Oxides": Army night vision program.

Spicer's letter omits many important details. The two statements quoted in the body of our article did appear in the second volume of our report, published in November 1971, but they appeared there as verbatim quotes from the first volume of our report, published the previous June. Thus, although Spicer had 6 months to correct his misreading, he only chose to do so after publication of the second volume. We held our findings confidential because of the highly charged political atmosphere which prevailed while we were preparing our study. We were under substantial pressure from opponents of DOD work to release our more explosive results piecemeal and from elements of the faculty to stop the study. We hoped that releasing all our results to everyone at once would lead to a more rational debate than was then taking place. We are, however, sensitive to Spicer's views, so after review and publication of our report, we agreed to permit him to include an addendum stating his revised

The First Wide Range Microtome-cryostat... Temperatures from —15°C to —50°C...
Frozen Sections from 40 µ to 2 µ.

The Harris LoTemp model WRC is two microtome-cryostats in one. A single unit that can do both routine diagnostic procedures and such sophisticated research procedures as thin-section light microscopy, autoradiography, fluorescence microscopy and other histological procedures, at a cost comparable to presently available routine cryostats.

The Harris model WRC is compact ... can be moved anywhere it's needed. The cold chamber has extra room for tissue handling, storage or freeze drying. Full opening top with special access ports combines the features of a totally closed system with the easy accessibility of open top models.

Available equipped with International Equipment Corp. microtomes, or cryostat only prepared for installation of your present L.E.C. microtome. Installed stereo zoom microscope also available.

For a full description of the Harris WRC and its wide range of additional features write or call . . .

WATERS ASSOCIATES
201 Maple Street, Milford, Mass. 01757
Telephone (617) 478-2000

The Liquid Chromatography People
Circle No. 32 on Readers' Service Card

682

Harris Manufacturing Co., Inc.
14 Republic Road
Treble Cove Industrial Park
North Billerica, Mass. 01862
(617) 687-5116

Circle No. 252 on Readers' Service Card
position and included what we believed to
be its most important part as a footnote in
our article. This approach permits the
reader to draw his own conclusions con-
cerning the validity of our arguments
based on the full record. We do not agree,
however, that Spicer’s shift from saying
“absolutely no connection can be made”
between his work and night vision to his
statement that, “I think it is very doubtful
that our work will contribute to night vi-
sion,” affects the point we were making by
quoting him.

These two letters provide good evidence
of the success of DOD’s policy of not en-
couraging university workers to think
about the military implications of their
work.

STANTON A. GLANTZ
Division of Cardiology,
Stanford University Medical Center,
Stanford, California 94305

NORM V. ALBERS
1601 Slagle Creek Road,
Grants Pass, Oregon 97526

Notes
1. This contract typifies those in which the DOD was
interested in a different aspect of the work than
were the principal investigators. The latter were
building a high energy physics laboratory to en-
gage in high energy physics research; the Navy
sponsored the work to obtain the cryogenic tech-
ology. Once laboratory construction was com-
plete, the Navy had no further interest, and sup-
port for the high energy physics research shifted to
the National Science Foundation.

Cabbage Cigarettes?

Isn’t it hypocritical to expound piously
on the world food shortage and impending
mass starvation while agricultural agencies
the world over are aiding and promoting
the growing of tobacco, “the most widely
grown commercial non-food plant in the
world” (1)? To be sure, tobacco does con-
tribute to population erosion through em-
physema and cancer, but this hardly seems
a humane means of population control,
and these diseases cause a great drain on
medical resources and finances.

Since 44.8 percent of the world’s vast to-
bacco acreage lies in “starving” Asia (1),
would it not be humanitarian to offer eco-
Nomic inducements to farmers to switch
from tobacco to food crops?

If people must smoke, let their cigarettes
be made of a less toxic plant material—not
a monopolizer of arable land, but a vege-
table by-product of food crops, say, cabb-
gage, lettuce, or papaya leaves.

JULIA F. MORTON
Morton Collectanea, University of
Miami, Coral Gables, Florida 33124

Reference
1. B. C. Akehurst, Tobacco (Humanities, New York,
1969).
Pure water. Any way you want it.

Different labs have different pure water requirements. Which is why we developed PCS — the Pressure Cartridge System. The pure water system that can be exactly tailored to your needs.

With PCS, you can use two, three, four, or more different cartridges to sequentially remove different kinds of impurities. At flow rates up to 60 liters per hour and more. And there are 14 different PCS cartridges to choose from.

We also can give you Reverse Osmosis — our RO/PCS. To remove 85-90% of feedwater impurities. Or, when used with PCS, to extend the life of cartridges by a factor of 10.

At flow rates from 22 to 66 lph. So when you need pure water, why not get it exactly the way you want it. From:

Barnstead.
225 Rivermoor St., Boston, Massachusetts 02132.

Circle No. 198 on Readers' Service Card
It's a controller.
It's a data logger.
It's a calculator that interfaces with most of the measurement instruments in your lab.

Do you need an analytical instrumentation system? A data acquisition system? A system controller? You can build these — or just about any measurement system you need — by connecting the appropriate instruments to a Hewlett-Packard 9800 Series programmable calculator. Our interface cables let you connect from one to twenty-four instruments. The calculator automatically controls the operation of the instruments, stores measurement data, and rapidly reduces your data. At the same time, it can also control a full range of peripheral devices, from card and tape readers to a printer or plotter — or your own black box. And you can still use your calculator and instruments as individual tools.

The new Hewlett-Packard Interface Bus allows selected instruments to be connected to a 9820, 9821, or 9830 calculator, providing both control and data capability, using a single I/O slot. This is true even if your lab already has one of these calculators. Other HP interface cables accommodate instruments using 8-4-2-1 BCD output, 8-bit parallel codes in any input and output formats, and bit-serial data.

You'll find that HP calculator-controlled systems substantially improve measurement speed and convenience. But even more important, they free you from repetitive measurement tasks or the need to design special controllers or data loggers. And that means more time for creative and productive work. For more information on how to interface an HP 9800 Series programmable calculator to your instrumentation, call your local HP sales office or send the coupon below.

Circle No. 244 on Readers' Service Card