Even the back is all up front. Everything orderly and easy to get at.

The tall meters are ambidextrous. You decide whether they function left-handed or right.

Corning tall meters are lean... and that includes their price. Even with a general purpose pH and a reference electrode thrown in, they actually cost less than comparable short meters.

They can be used with ion selective electrodes, too.

Both Corning originals are at your dealer now. Ask for a demonstration. The Model 130 is a 3 decimal unit with fine tuning. $895, suggested list price. The Model 125 has all the critical features with a 2 decimal display. $595, suggested list price.
We don't make every suspected cancer-causing agent in the world, but we make some nobody else does.

NEC-528 Acetyl-2-aminofluorene, N-[9-^{14}C]-
NEC-656 Benzidine, [^{14}C(U)]-
NET-412 Dibenz[a,h]anthracene, 1,2,5,6-[^{2}H(G)]-
NEC-639 Dimethylbenz[a]anthracene, 7,12-[dimethyl-^{14}C]-
NEC-700 Dinitrosopiperazine, N,N'-[^{14}C(U)]-
NEC-694 Ethyl-N-nitrosourea, N-[ethyl-1-^{14}C]-
NEC-198 Methylcholanthrene, 3-[6-^{14}C]-
NEC-705 Methyl-N'-nitro-N-nitrosoguanidine, N-[methyl-^{14}C]-
NEC-282 Methyl-N-nitroso-p-toluenesulfonamide, N-[methyl-^{14}C]-
NEC-693 Methyl-N-nitrosourea, N-[methyl-^{14}C]-
NET-408 Methyl-N-nitrosourea, N-[methyl-^{3}H]-
NEC-702 Nitrosodiethylamine, N-[ethyl-1-^{14}C]-
NEC-631 Nitrosodimethylamine, N-[methyl-^{14}C]-
NET-527 Nitroso-di-n-propylamine, N-[2,3-^{3}H]-
NEC-703 Nitrosoethylmethyamine, N-[ethyl-1-^{14}C]-
NEC-701 Nitrosornornicotine, N'-[pyrroolidine-2-^{14}C]-
NEC-698 Nitrosopiperidine, N-[2,5-^{14}C]-
NET-526 Nitrosopiperidine, N-[3,4-^{3}H]-
NET-525 Nitrosopamine, N-[3,4-^{3}H(N)]-
NEC-697 Nitrosopyrrolidine, N-[2,5-^{14}C]-
NET-524 Nitrosopyrrolidine, N-[3,4-^{3}H]-

Caution: Not for use in humans or clinical diagnosis.
A New World of

Materials: Renewable and Nonrenewable Resources

Edited by Philip H. Abelson and Allen L. Hammond

An important exploration of the new set of realities affecting the flow of raw materials—a probing of the increasing demand for them and the obstacles to their discovery and production.

A reliable flow of raw materials has been the fundamental factor in the health of the American economy and of the economies of all other industrial nations. While economic growth has begun once again in the United States and, more slowly, in Europe, it is predicated on a whole new reality of materials dramatically different from that of a decade ago. No longer can an abundance of basic commodities be taken for granted, and no longer can the supplying of any commodity be assumed continual. We have learned that the flow of existing materials is vulnerable to interruption by financial shifts, increased nationalization of foreign-owned properties, restriction of access to resources on public lands, and a host of other considerations born of the 1970’s. In the development of substitute materials we must hurdle these obstacles and also adhere to new regulations for environmental protection.

In February 1976 Science devoted an entire issue to a critical in-depth look at these and related problems. The special issue contained 24 papers written by some of the country’s foremost authorities. Thirteen more articles created by other, equally distinguished authors were added to the list, and the total is being published as a compendium to provide a meticulous look at Materials: Renewable and Nonrenewable Resources. The compendium’s authors probe the implications of national policy, energy constraints, environmental considerations on materials production and use, the perspectives in needs and supplies of resources, high technology materials, and renewable and reusable resources. They examine those materials issues most vital to industrial economics, the future of materials research, and the effect of the new realities on the quality of life.

The result is rare and refreshing—a detailed study which yields an identification of critical problems as well as the authors’ consensus that, in principle, these problems are solvable. This overview must be studied by those involved in materials problems today, by those reaching for answers, and by all of us who will benefit from the solutions. Don’t miss this vital collection of papers. A brief sampling of the compendium’s contents reveals the importance of studying and dealing with these new realities.

Papers in the Compendium include

"Materials: Some Recent Trends and Issues"—Hans H. Landsberg
"The Age of Substitutability"—H. E. Goeller and Alvin M. Weinberg
"Forest Resources: An Overview"—James S. Bethel and G. F. Schreuder

ORDER FORM:

Please send me ______ copies of your latest Compendium Materials: Renewable and Nonrenewable Resources.

☐ Casebound, @ $12.95 retail, $11.95 for Members (prepaid).
☐ Paperbound, @ $4.95 retail, $4.45 for Members (prepaid).
☐ Check or Money Order payable to AAAS enclosed.
☐ Please bill me. (Remittance must accompany all orders under $5.00.)

(please allow 6 to 8 weeks for delivery)

Name ____________________________
Address __________________________
City __________________ State ______ Zip ______

MAIL TO:

American Association for the Advancement of Science
Dept. M-1, 1515 Massachusetts Avenue, N.W.,
Washington, D.C. 20005

Orders for these publications from countries other than the United States and Canada should be sent to Academic Press, Inc. through any one of the following locations:

111 Fifth Avenue
New York, New York 10003

Harcourt Brace Jovanovich Building
Palk and Gears Streets
San Francisco, California 94109

24/28 Oval Road
London NW1 7DX, England

Harcourt Brace Jovanovich Group
Post Office Box 198
Artham, NSW 2004, Australia

22 OCTOBER 1976
No other research quality laboratory microscope gives you so much for so little. You see better, you see more because of Balplan's flat field, infinity-corrected optical system. Crisp, sharp image definition extends edge to edge over the entire, large 20mm field of view. Contrast, resolution and color correction are the best obtainable due to new fluorite optical elements and newly developed vacuum coatings. Photomicrography is richly rewarding when you're using Balplan. And Balplan's exclusive suspended inner arm insures vibration-free images with positive stability. There is never any image drift.

Balplan offers unprecedented versatility for a multitude of uses because of its modularity. Design your own personal Balplan for clinical, research and educational applications from a comprehensive selection of illuminators, stages, objectives, nosepieces, viewing heads and camera formats.

Add or subtract a wide selection of components to fit your specific needs in biology, pathology, hematology, cytology and bacteriology.

The Balplan experience is truly exciting. See for yourself. Write for a free Balplan catalog (#31-2411) and a free demonstration in your lab with your own specimens. There is no obligation.

Write to Bausch & Lomb, Scientific Optical Products Division, 20810 Bausch Street, Rochester, N.Y. 14602
Incubators & Growth Chambers

- Complete line of programmed incubators, growth chambers, walk-in environmental rooms for biological research and instructional needs.
- Environol solid state programmable controller.
- Poured urethane insulation for more efficient operation.
- Close tolerance temperature, humidity and light control.

Write today for our descriptive literature on programmed incubators, growth chambers, environmental rooms, chest and upright supercold freezers and other scientific equipment.

Calumet is professional photographic equipment
Calumet Scientific also offers you the highest quality professional photographic equipment at direct-from-the factory savings.

To detect and assay reverse transcriptase you need:

<table>
<thead>
<tr>
<th>7795</th>
<th>Poly(rCm)*p(dG)_{12-18}</th>
<th>60.00</th>
<th>240.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>7944</td>
<td>Poly(rC)*p(dG)_{12-18}</td>
<td>40.00</td>
<td>160.00</td>
</tr>
<tr>
<td>7943</td>
<td>Poly(dC)*p(dG)_{12-18}</td>
<td>50.00</td>
<td>200.00</td>
</tr>
<tr>
<td>7878</td>
<td>Poly(rA)*p(dT)_{12-18}</td>
<td>30.00</td>
<td>125.00</td>
</tr>
<tr>
<td>7868</td>
<td>Poly(dA)*p(dT)_{12-18}</td>
<td>38.00</td>
<td>150.00</td>
</tr>
<tr>
<td>7855</td>
<td>Poly(rA)*p(dT)_{10}</td>
<td>30.00</td>
<td>125.00</td>
</tr>
<tr>
<td>7850</td>
<td>Poly(dA)*p(dT)_{10}</td>
<td>38.00</td>
<td>150.00</td>
</tr>
<tr>
<td>7865</td>
<td>Poly(rA)*Poly(dT)</td>
<td>22.50</td>
<td>90.00</td>
</tr>
</tbody>
</table>

(units are measured at 260 nm in 0.1 M NaCl at pH 7.0.)

Cyclic AMP, GMP determination:

Second antibody sensitivity without second incubation

These new \(^{125}\)I RIA kits from NEN combine extreme sensitivity with speed and convenience. We developed a very sensitive first antibody and pre-reacted it with a second antibody to eliminate the intermediate incubation.

Femtomole sensitivity is easily achieved by acetylation – with reagents provided in the kits.

There are other improvements, too. The iodinated tracer is exceptionally stable and is stored refrigerated, not frozen. Pipetting is done at room temperature. And a tritium-labeled marker is included to monitor sample recovery.

The resulting system is highly sensitive, accurate, reproducible, and yields low blanks.

Everything else is included for running 200 tubes – buffer, standards, complete protocol – even a telephone number if we can be of technical assistance. Ask us to send you our technical brochure.