Influence of Cadmium on Human

Alpha-1-Antitrypsin: A Reexamination

An inherited deficiency in the major protease inhibitor in human plasma, alpha-1-antitrypsin (AAT), is associated with chronic obstructive lung disease (I). This may result from the unregulated action of proteolytic enzymes released in the lung by leukocytes and alveolar macrophage cells (2). An increased incidence of emphysema is found in industrial workers exposed to cadmium over long periods of time (3). In addition, the cadmium concentrations in emphysematous lungs are increased as compared to that of normal lungs (4); also cadmium accumulates in the human body as a consequence of cigarette smoking (5).

Chowdhury and Louria found a progressive decrease in both the trypsin inhibitory capacity (TIC) and the AAT levels as assayed by radial immunodiffusion (RID) when increasing levels of cadmium were added to either plasma or partially purified AAT (6). Other heavy metals (Pb, Hg, Ni and Zn) had no effect. Chowdhury and Louria used a cadmium reference solution in dilute nitric acid, as provided by Fisher Scientific Company (7). They suggested that the toxic effects of cadmium on the human lung might be a consequence of its specific interaction with AAT. However, from our own studies, we conclude that the

Influence of Cadmium on Human

Alpha-1-Antitrypsin: A Reexamination

An inherited deficiency in the major protease inhibitor in human plasma, alpha-1-antitrypsin (AAT), is associated with chronic obstructive lung disease (I). This may result from the unregulated action of proteolytic enzymes released in the lung by leukocytes and alveolar macrophage cells (2). An increased incidence of emphysema is found in industrial workers exposed to cadmium over long periods of time (3). In addition, the cadmium concentrations in emphysematous lungs are increased as compared to that of normal lungs (4); also cadmium accumulates in the human body as a consequence of cigarette smoking (5).

Chowdhury and Louria found a progressive decrease in both the trypsin inhibitory capacity (TIC) and the AAT levels as assayed by radial immunodiffusion (RID) when increasing levels of cadmium were added to either plasma or partially purified AAT (6). Other heavy metals (Pb, Hg, Ni and Zn) had no effect. Chowdhury and Louria used a cadmium reference solution in dilute nitric acid, as provided by Fisher Scientific Company (7). They suggested that the toxic effects of cadmium on the human lung might be a consequence of its specific interaction with AAT. However, from our own studies, we conclude that the
reported in vitro effects of cadmium on AAT can be attributed solely to the protein denaturing properties of the nitric acid.

The concentration of cadmium in the reference solution was 1 mg/ml in 0.29N nitric acid. We added from 0.01 to 0.50 ml of this solution to purified AAT (1 mg/ml) in 0.02M tris buffer, pH 8.0. After the mixture was incubated for 1 hour at 37°C, TIC (9) and RID (10) assays showed a parallel decrease in the biological and immunological activity of AAT, respectively. These changes, however, were always accompanied by an increased acidity of the solution. To examine the contribution of pH to the observed decrease in AAT, portions of the cadmium solution were lyophilized and reconstituted with tris buffer, pH 8.0. Using either this media or cadmium acetate in tris, we could not demonstrate any effect on TIC (or AAT concentration) even when we used as much as ten times the concentration of metal reported to give almost complete inhibition. However, 0.29N HNO₃ containing no cadmium produced a decrease of AAT equivalent to that found with the cadmium reference solution (Fig. 1a).

When heparinized human plasma (diluted 1:1 with saline) was substituted for pure AAT solutions and the experiment was repeated, AAT was again found to vary with pH and not with the metal concentration (Fig. 1b). In order to determine the independent effects of cadmium and nitric acid on other plasma proteins, we developed cellulose acetate electrophoretic patterns from the treated plasma. At 250 μg of cadmium (reconstituted in tris buffer) per milliliter of diluted plasma, no change was detectable. However, an equivalent amount of cadmium introduced from the Fisher reference media resulted in major electrophoretic changes, which were closely paralleled by 0.29 N HNO₃ alone (Fig. 2).

Therefore, the hypothesis that cadmium neutralizes the immunological and biological activity of AAT cannot be confirmed at dosages of 500 to 1000 percent of those reported. Previous results can be accounted for on the basis that the reference solution of cadmium employed resulted in acidification and denaturation of AAT. The adverse effects of low pH on the biological properties of AAT have been described (11).

Cadmium has complex effects on the biochemistry of mammalian organisms in general, and on the lung in particular. A large number of enzyme activities are either elevated or depressed in individuals with cadmium poisoning (12). Alveolar cellular proliferation results, although the precise biochemical mechanism that leads to this cellular response is uncertain (13). The result is a progressive remodeling of the normal lung structure in an emphysematous form. This sequence of events is not the result of any specific chemical interaction between cadmium and AAT.

CHARLES B. GLASER
LUCY KARIC
TIM HUFFAKER
ROBERT J. FALLAT
Institutes of Medical Sciences,
Pacific Medical Center,
San Francisco, California 94120

References and Notes


5. This work was supported by NIH grants HL 174-02 and HL 14692-03 and the American Lung Association.

22 June 1976

We have shown that cadmium standard solution in a dose-related fashion (Fisher Scientific Company, Springfield, N.J.) produces a marked decrease in both antitryptpin concentration (AAT) and trypsin inhibitory capacity (TIC) in normal human plasma (1). We concluded from our investigation that the said effect of cadmium might be a factor in the etiology of emphysema in industrial workers exposed to cadmium. Fisher Scientific did not specify the concentration of the nitric acid in the bottle. We have taken the Pb, Zn, and Ni reference solutions, which are also in dilute nitric acid and found that the Cd reference solution did produce antitryptpin and TIC changes, whereas the other reference solutions did not. We did not focus on the effects of pH alone in these simultaneous determinations because of the differences among the metals. We agree with Glaser et al. (2) that part of the reduction in TIC and AAT concentration could be due to pH effect. However, the pH we have subsequently determined (Beckman research pH meter) was found to be different from estimations of Glaser et al. For example, using 0.1 ml of Fisher Cd reference solution in human plasma saline (1:1 dilution), we found the pH to be 5.99 as opposed to the 4.7 determined by Glaser et al. The difference in pH between normal and treated plasma in our case was pH 1.48, whereas with Glaser et al., the pH difference was 4.7; the reason for the discrepancy is not clear. Furthermore, with the addition of 0.1 ml of 0.25N HNO₃ (which the Fisher Scientific Company indicates is at present in Cd reference solution) we found the change in pH to be 0.96 compared to the 3.3 found by Glaser et al. At the low pH used by Glaser et al., one would expect a bigger TIC drop because of protein denaturing effect. In our study, we did not carry out the experiment beyond the opalescent point. The mixture starts to become cloudy with addition of more than 0.1 ml of the Cd reference solution (equivalent to 5000 μg of Cd per 100 ml of plasma). We did not proceed further, but Glaser et al. did proceed much beyond this point.

Finally, we have given CdCl₂ to mice and reduced plasma antitryptpin activity in vivo; no changes in plasma pH were observed in these mice. We agree that in vitro the effect on antitryptpin activity may be a combination of pH and cadmium, but we believe that if protein denaturation is avoided, we can show an effect of cadmium not shared by other trace metals studied. The in vivo studies in mice also suggest that cadmium exerts this effect independently of pH.

PARIMAL CHOWDHURY
Department of Medicine, New Jersey Medical School, Newark 07103

DONALD B. LOURIA
Department of Preventive Medicine and Community Health, New Jersey Medical School, Newark 07103

References and Notes


Influence of cadmium on human alpha-1-antitrypsin: a reexamination
CB Glaser, L Karic, T Huffaker and RJ Fallat

Science 196 (4289), 556-557.
DOI: 10.1126/science.15318