LETTERS

EDITORIAL
The Voyager Missions

ARTICLES
Empirical Explorations of SYNCHEM: H. L. Gelernter et al.
Hydrogen and Oxygen from Water: E. A. Fletcher and R. L. Moen
Secondary Sewage Treatment Versus Ocean Outfalls: An Assessment: C. B. Officer and J. H. Ryther

NEWS AND COMMENT
Telecommunications Eavesdropping by NSA on Private Messages Alleged
Briefing: Future Doctors Balk at the Bill; Sandwiches and Beer for the Press at ACDA?
Seveso: The Questions Persist Where Dioxin Created a Wasteland
Four Medical Schools Draw the Line on Capitation

RESEARCH NEWS
Chalcogenide Glasses: A Decade of Dissension and Progress

BOOK REVIEWS
REPORTS

Chemical Bioinduction of Rubber in Guayule Plant: *H. Yokoyama et al.* ... 1076

Axial Bending in the Early Chick Embryo by a Cyclic Adenosine Monophosphate Source: *A. Robertson and A. R. Gingle* 1078

Autoantibodies to Zona Pellucida: A Possible Cause for Infertility in Women: *C. A. Shivers and B. S. Dunbar* 1082

Purine Nucleoside Phosphorylase Deficiency: Altered Kinetic Properties of a Mutant Enzyme: *I. H. Fox et al.* 1084

A Specific High-Affinity Binding Macromolecule for 1,25-Dihydroxyvitamin D$_3$ in Fetal Bone: *B. E. Kream et al.* 1086

Temporal Lobe Aggression in Rats: *J. P. J. Pinel, D. Treit, L. I. Rovner* .. 1088

Suprachiasmatic Nucleus: Use of 14C-Labeled Deoxyglucose Uptake as a Functional Marker: *W. J. Schwartz and H. Gainer* 1089

Neurogenesis in the Adult Rat: Electron Microscopic Analysis of Light Radiautographs: *M. S. Kaplan and J. W. Hinds* 1092

Communication Deviance in the Families of Schizophrenics: A Comment on the Misuse of Analysis of Covariance: *J. A. Woodward and M. J. Goldstein* .. 1096

Social Communication in Canids: Evidence for the Evolution of a Stereotyped Mammalian Display: *M. Bekoff* 1097

COVER

Autoantibodies to zona pellucida in the serum of an infertile woman react with the pig zona pellucida to produce a green fluorescence in immunohistochemistry tests. These autoantibodies could be responsible for infertility in some women by blocking sperm-egg interaction at fertilization or inhibiting zona shedding at implantation (about $\times 1800$). See page 1082. [C. Alex Shivers, University of Tennessee, Knoxville]
The Voyager Missions

The missions of the Voyager spacecraft, which include rendezvous with Jupiter, its satellites, Saturn, its satellites, and possibly Uranus, and a much later destiny in some other stellar system, have multiple appeals. Most of the people around the world can have a sense of participation and wonderment as coded messages in their own language accompany the vehicles on their long journeys. These missions to the planet also touch a universal, restless component of the human spirit—a longing to explore. To those of an engineering bent, the excellence of the instrumentation must elicit admiration. Others, who are deeply interested in the frontiers of scientific knowledge, can anticipate a rich flow in information bearing on the formation of the solar system. A decade ago the level of knowledge concerning the planets and their satellites was such that almost any arm-waving explanation would fit the facts. This is no longer true. Ground-based optical and radio astronomy combined with spacecraft missions to Mercury, Venus, the Moon, Mars, and Jupiter have already limited the area of permissible speculation.

The quantity of information conveyed to the earth from the Voyagers will greatly surpass that of earlier missions. This will be true in spite of the technical problems inherent in communication at distances of the order of 800 million to 1600 million kilometers. In the dim reaches of Saturn, solar radiation is 1 percent that at the earth and temperatures are about 90°K—scarcely a favorable environment for instruments. However, the 11 pieces of complex apparatus will function, using a total of 88 watts for electronics and 16 watts for heating.

The instrumentation of each spacecraft includes an ultraviolet spectrometer covering the wavelength range 50 to 170 nanometers with a resolution of 1 nanometer. In the visible part of the spectrum the Voyager cameras will achieve a resolution and observing time at Jupiter better by a factor of 40 than those of the Pioneer spacecraft. The use of interference filters will permit observations at selected wavelengths from 300 to 650 nanometers. Photopolarimeter equipment will permit determination of the physical properties of particulate matter in the atmospheres of Jupiter and Saturn and in the rings of Saturn. Intensity and linear polarization of scattered sunlight will be measured at selected wavelengths in the spectral region 235 to 750 nanometers.

The infrared investigations on the Voyager missions use a Michelson interferometer which covers the infrared in the range 2.5 to 50 micrometers. With this broad coverage and the good resolution achievable by the interferometer much compositional information can be gathered. This will include determination of the relative amounts of such major components as H₂, CH₄, and NH₃. There is an expectation of obtaining information about such trace constituents as H₂O, PH₃, and CO. There is also a possibility that D/H and ¹³C/¹²C isotope ratios can be determined. The infrared equipment will permit examination of the surface composition of the satellites with good spatial resolution. In addition to measuring solid H₂O and NH₃, the spectrometers will be capable of detecting a number of silicate minerals.

This combination will be supplemented by radio science investigations. When a spacecraft moves behind a planet, as viewed from the earth, the radio paths traverse the planet’s atmosphere and ionosphere. All of these regions affect the characteristics of the received radio signals. This will make possible a study of vertical structure in the atmospheres of the planets and also in Saturn’s rings. When specially interesting objects are being examined, the radio infrared, visible, and ultraviolet instruments can all participate in a mutually reinforcing fashion.

This brief outline of only five of the 11 instrument packages on the Voyagers should make it clear that the visits to the planets will be exciting and worthwhile adventures. —PHILIP H. ABELSON