LETTERS State and Local Science Policy: R. P. Nalesnik; D. O. Jermain; Research Management and Government Accounting: J. W. Halley; Nobel Prize in Physiology or Medicine: J. Meites; Congressional Fellowship Stipend Raised for 1978: R. A. Scribner

EDITORIAL Research Opportunities in Fossil Fuels: E. E. David, Jr.

ARTICLES Structure and Properties of Metallic Glasses: P. Chaudhari and D. Turnbull
Population, Food Intake, and Fertility: R. E. Frisch

NEWS AND COMMENT Gene-Splicing Rules: Another Round of Debate
Photocopying: New Copyright Law Changes the Ground Rules
Peat for Fuel: Development Pushed by Big Corporate Farm in Carolina

RESEARCH NEWS Position-Sensitive Detectors: An “Electronic Film” for X-rays
Information Theory: A Surprising Proof

AAAS Sections, Affiliates, Committees Plan Annual Meeting Events; AAAS Socio-Psychological Prize; SB&F Needs Reviewers; I See What You’re Saying; Amendment to AAAS Constitution; Deans Review Short Courses: J. M. Dasbach

ANNUAL MEETING Science and Technology: New Tools, New Dimensions: A. Herschman; Meeting Information; Preconvention Program

BOARD OF DIRECTORS
WILLIAM D. McGILROY Retiring President; Chairman
EMILIO Q. DADDARIO President
EDWARD E. DAVID, JR. President-Elect
MARTIN M. CUMMINGS RUTH M. DAVIS
RENEE C. FOX BERNARD GIFFORD

CHAIRMEN AND SECRETARIES OF AAAS SECTIONS
MATHEMATICS (A) Dorothy M. Stone
Mathematics (B) Rolf M. Sinclair
PHYSICS (B) Rolf M. Sinclair
Norman Ramsey
SOCIAL AND ECONOMIC SCIENCES (K) Multidisciplinary
Daniel Rich
HISTORY AND PHILOSOPHY OF SCIENCE (L) Ethel J. Buswell
Elhanan M. Wasser
GEORGE D. BASSAILA
PHARMACEUTICAL SCIENCES (S) Stuart I. Eilberg
Harold M. Fulmer
Raymond Jang
INFORMATION, COMPUTING, AND COMMUNICATION (T) Lawrence P. Culp
Sholomo Pearlman
Joseph Becker

DIVISIONS
ALASKA DIVISION
Pacific Division
SOUTHWESTERN AND ROCKY MOUNTAIN DIVISION

SCIENCE is published weekly, except the last week in December, but with an extra issue on the third Tuesday in September, by the American Association for the Advancement of Science, 1515 Massachusetts Ave., NW, Washington, D.C. 20005. New combined with The Scientific Monthly. Second-class postage paid at Washington, D.C., and additional entry. Copyright © 1978 by the American Association for the Advancement of Science. Member rates on request. Annual subscriptions $60; foreign postage: Canada $10; other surface $13, air-service via Amsterdam $30. Single copies $1.50; $2 by mail (back issues $3) except Guide to Scientific Instruments $6. School year subscriptions: 9 months $45; 10 months $50. Provide 6 weeks notice for change of address, giving new and old addresses and postal codes. Send a recent address label, including your 7-digit account number. Postmaster: Send Form 3579 to Science, 1515 Massachusetts Avenue, NW, Washington, D.C. 20005.
BOOK REVIEWS
Patterns of Evolution as Illustrated by the Fossil Record, reviewed by R. E. Ricklefs; The Evolving Continents, J. F. Dewey; Genetics of Human Cancer, N. B. Atkin

REPORTS
Viking First Encounter of Phobos: Preliminary Results: R. H. Tolson et al.
Multicolor Observations of Phobos with the Viking Lander Cameras: Evidence for a Carbonaceous Chondritic Composition: J. B. Pollack et al.
Genetic Defect in Biosynthesis of the Precursor Form of the Fourth Component of Complement: R. E. Hall and H. R. Colten
Antibody-Dependent Lymphocytotoxicity Induced by Immunoglobulin G from Hodgkin’s Disease Splenic Lymphocytes: R. L. Longmire et al.
Mutagenicity of Filtrates from Respirable Coal Fly Ash: C. E. Chrisp, G. L. Fisher, J. E. Lammerd
Pierce’s Disease of Grapevines: Isolation of the Causal Bacterium: M. J. Davis, A. H. Purcell, S. V. Thomson
Thyroid Gangliosides with High Affinity for Thyrotropin: Potential Role in Thyroid Regulation: B. R. Mullin et al.
Deficiencies of Glucosamine-6-Sulfate or Galactosamine-6-Sulfate Sulfatases Are Responsible for Different Mucopolysaccharidoses: N. Di Ferrante et al.
Melatonin Content of the Human Pineal Gland: A. C. Greiner and S. C. Chan
Cholinergic Vesicles: Ability to Empty and Refill Independently of Cytoplasmic Acetylcholine: P. T. Carroll and S. H. Nelson
Superstiton: A Matter of Bias, Not Detectability: P. R. Killeen
Phenobarbital: Effects of Long-Term Administration on Behavior and Brain of Artificially Reared Rats: J. Diaz and R. J. Schain

COVER
Research Opportunities in Fossil Fuels

The Syncrude project to produce oil from the Athabasca tar sands is an awesome sight. A 600-foot stack dominates the scene. A 260-megawatt power station will cogenerate process steam. Four mammoth electric-powered dragline scoops will retrieve tar sand from a 130- to 150-foot-thick bed lying some 50 feet beneath the surface. Two electric-powered conveyors 3 miles long and 6 feet wide will take the sand to what must be the world's largest washing machines, where tar and sand will be separated. The sand tailings will be initially stored in a large retention pond but ultimately returned to the diggings. The tar will be upgraded to a high-quality synthetic crude oil in a processing plant as big as a refinery. All this is being put in place in the northern climate of Mildred Lake, Alberta, Canada, 300 miles north of Edmonton. Syncrude will start up in 1978 and when fully operational, will average about 110,000 barrels per day of synthetic crude.

Over $2 billion will be spent at Mildred Lake before production begins. Even this is small when compared with the investment to recover oil and gas from the North Sea—that will be larger than the cost of Project Apollo. In different terms, the cost of the North Sea projects is currently $10,000 and more for each daily barrel of oil production capacity. Larger costs and corresponding research, development, and engineering will be involved in coal gasification and liquefaction, shale oil recovery, and deep drilling on the continental rise or the deep structures of the Gulf of Mexico. These are likely to be at least an order of magnitude more expensive than "conventional" oil production on shore.

Projects such as Syncrude and the North Sea are economically attractive only because of current and projected world energy prices. This situation carries over to solid hydrocarbons, where low-rank and high-sulfur coals may be gasified or liquefied before transportation and use, removing pollutants in the process. In the direct use of coal, complex and controlled combustion will be the rule—for example, fluid bed combustion to achieve acceptable flue gas quality.

The increasing costs of obtaining and using fossil fuels from low-quality or hard-to-get-at sources are impressive, but even more impressive is the opportunity provided for science and technology. Production, refining, and use of fossil fuels, already highly technology intensive, will continue to demand even more scientists and engineers. Chemistry is crucial, as are chemical, mechanical, and civil engineering. Catalysis, thermal chemical processing, and physical separation of chemical species have long been staples of petroleum refining. These same disciplines are involved in coal gasification and liquefaction. Technological improvements are needed to cut investment, to make conversion more energy efficient, and to improve the quality of products. This must be done with resource feeds of low quality, which will probably be high in contaminants such as sulfur, nitrogen, and heavy metals. New corrosion-resistant materials, improved designs, and better catalysts will be required. Computer control of complex chemical processes will be vital.

The coming years will see the creation of new industrial complexes based on fossil feeds. They will produce useful fuels and chemicals from a variety of inputs. The processes involved will be energy efficient, effluents will be reduced, and the toxicities of the products will be known and controlled. There are still many issues to be considered, such as the carbon dioxide greenhouse effect and the potential environmental damage of removing materials from the ground. Federal policies are a major uncertainty. Nevertheless, the opportunity for disciplined and creative minds is extraordinary.—EDWARD E. DAVID, JR., President-Elect, AAAS (1978), and President, EXXON Research and Engineering Company, Florham Park, New Jersey 07932