LETTERS


EDITORIAL

Bad Science and Social Penalties: C. Comar

ARTICLES

Teotihuacán, Tepeapulco, and Obsidian Exploitation: T. H. Charlton

Radioimmunoassay: A Probe for the Fine Structure of Biologic Systems: R. S. Yalow

NEWS AND COMMENT

Health Care as a Human Right: A Cuban Perspective

Brieﬁng: Current Congress Could Give Cabinet Berth to Education; Eskimos Honor Whale Quota, but Ask New Terms for Hunt; U.S. Planning for UNCSTD—Problems of Development

Cloning Caper Makes It to the Halls of Congress

President and Science Adviser Push for a Foundation for Development

RESEARCH NEWS

Glomar Explorer: New Era in Deep-Sea Drilling?

The Mating Game: What Happens When Sperm Meets Egg

ANNUAL MEETING

Call for Contributed Papers; Instructions for Contributors

BOOK REVIEWS

Proceedings of the International Conference on Quantitative Genetics, reviewed by R. Milkman; Hypothalamic Peptide Hormones and Pituitary Regulation, S. Reichlin; Plant Response to Wind, J. W. Sturrock; Rockslides and Avalances, A. M. Johnson; Books Received and Book Order Service
REPORTS

The Moon in Heiligenschein: R. L. Wildey .................................................. 1265

Oxygen Isotope Composition of Subglacially Precipitated Calcite: Possible
Paleoclimatic Implications: B. B. Hanshaw and B. Hallet ................................ 1267

Excitation-Contraction Coupling in Skeletal Muscle: Blockade by High Extracellular
Concentrations of Calcium Buffers: J. N. Barrett and E. F. Barrett ..................... 1270

Flake Tools Stratified Below Paleo-Indian Artifacts: M. J. Reagan et al. ............... 1272

An El Jobo Mastodon Kill at Taima-taima, Venezuela: A. L. Bryan et al. ............... 1275

Soybean Lines Lacking the 120,000-Dalton Seed Lectin: S. P. Pull et al. ................. 1277

Subpicosecond Spectroscopy of Bacteriorhodopsin: E. P. Ippen et al. ................. 1279

Thrombin-Induced Platelet Aggregation Is Mediated by a Platelet Plasma Membrane-
Bound Lectin: T. K. Gartner et al. ..................................................................... 1281

Antibodies to Purified Insulin Receptor Have Insulin-Like Activity: S. Jacobs,
K.-J. Chang, P. Cuatrecasas ........................................................................... 1283

Effect of Myasthenic Immunoglobulin on Acetylcholine Receptors of Intact
Mammalian Neuromuscular Junctions: E. F. Stanley and D. B. Drachman ............ 1285

Is Pump Stimulation Associated with Positive Inotropy of the Heart?: L. Michael,
B. J. R. Pitts, A. Schwartz ............................................................................. 1287

Deep-Sea Foraging Behavior: Its Bathymetric Potential in the Fossil Record:
J. A. Kitchell et al. .......................................................................................... 1289

Human Lateralization from Head to Foot: Sex-Related Factors: J. Levy
and J. M. Levy ............................................................................................... 1291

Substances Moved by Axonal Transport and Released by Nerve Stimulation Have
an Innervation-Like Effect on Muscle: S. G. Younkin et al. ................................. 1292

Allylglucosinolate and Herbivorous Caterpillars: A Contrast in Toxicity
and Tolerance: P. A. Blau et al. ...................................................................... 1296

Prediction of Learning Rate from the Hippocampal Electroencephalogram:
S. D. Berry and R. F. Thompson .................................................................... 1298

Mating Behavior and Related Morphological Specialization in the Uropodine Mite,
Caminella peraphora: G. L. Compton and G. W. Krantz ..................................... 1300

Learned Taste Aversions in Children Receiving Chemotherapy: I. L. Bernstein .... 1302

Genetic Method for the Preferential Elimination of Females of Anopheles albimanus:
J. A. Seawright et al. ..................................................................................... 1303

COVER

The lighter colored material is calcite that recently precipitated beneath the
Blackfoot Glacier (Glacier National Park, Montana) when it overrode the
dark colored Precambrian calcareous bedrock. See page 1267. [Photo about
half scale; Bernard Hallet, Stanford University, Stanford, California]
Bad Science and Social Penalties

Bad science, especially in the environment and health area, may well impose socioeconomic penalties hardly envisioned. Health effects data, for example, are used as a basis and as a rationale (often emotional) for far-reaching decisions on the control of technology. All too often, published partial findings are taken uncritically at face value, misinterpreted, and misused; their qualifications are disregarded and their uncertainties forgotten. This can lead to technological fixes that do more harm than good.

I use the term bad science whenever hard conclusions from scientific investigation are not warranted by the data or the data are misapplied. The fault can lie with incompetent experimentation, analysis, or interpretation—the scientist's direct responsibility. Or the fault can lie with the misapplication of data. In the past, professional tradition has largely prevented or corrected bad science. Peer review and editorial discretion have promoted the scientific quality of published works; the responsibility and joy of scientists in confirming or denying published conclusions have led to the eventual obscurity of bad science.

But these professional procedures are being bypassed because of the needs of the times. The traditional outlet for scientific reporting is often short-circuited. Scientific work appears in unreviewed reports, news statements, hearing records, symposium transcripts, speeches, and independently published documents. Even editorial reviews are tending to become less critical to avoid any appearance of suppression of controversial findings. Also, much experimental work is becoming extremely difficult to confirm or refute—it may be large-scale, involve sophisticated techniques of experimentation and analysis, and be heavily computerized so that the original data are hard to obtain or the procedures difficult to check. In addition, political and regulatory pressures created by public concern often cannot await the inherently slow pace of scientific tradition.

Many practical problems caused by bad science currently arise from biomedical research, especially from epidemiologic studies. It is easy to understand, for example, why persons of keen analytic mind such as economists, physical scientists, and statisticians feel that if historical records exist on air pollution and in hospitals, it is easy to make correlations and determine the extent to which cleansing the air of the measured pollutants would improve health. But in reality, it is difficult! The generally uncertain quality of the original data and the confounding factors are usually overlooked.

What can be done? Bad science, being more newsworthy, will tend to be publicized and seized on by some to support their convictions. Resolution of issues by the "science court" is untested, not having gained broad support, and the National Academy of Sciences is already overburdened. Perhaps the solution lies in greatly increased efforts of individual scientists—to vigorously take initiative and responsibility, to immediately expose bad science whenever it occurs, and thereby to reestablish credibility.

This plea to be more critical in the reporting and acceptance of science as a basis for important decisions is not meant to inhibit innovative work, withhold information from the public, or delay action needed in the public interest. Any reports that suggest a public health problem should be quickly examined to determine if immediate action is needed to prevent existing or imminent harm. (Fortunately, this determination can often be made on the basis of previous experiences.) Then such reports should be used to spur and guide any needed additional research.

The present spate of "doomsday" items, if taken at face value, could cumulatively produce either socioeconomic dislocations with little or no net health benefit, or public derision and counterreaction that would inhibit environmental improvement.—CYRIL COMAR, Professor Emeritus, Cornell University, and Director, Environmental Assessment Department, Electric Power Research Institute, Palo Alto, California 94303