LETTERS

EDITORIAL

Regulation of the Chemical Industry

ARTICLES

Micropaleontology and Ocean Surface Climate: P. K. Weyl
Economics of Wind Energy Use for Irrigation in India: S. K. Tewari
Changing Postdoctoral Career Patterns for Biomedical Scientists: P. E. Coggeshall et al.

NEWS AND COMMENT

New Japanese–American Agreement Will Offset Trade Flow with Research Funds
Laboratory Chemicals May Come Under Costly OSHA Restrictions
Institute of Medicine Elects Members
Briefing: Glaser Seeks $200 Million for Orbiting Power Plants; China Shops for American Satellite; Congress Drops HEW Plan to Control Hospital Budgets; NAS to Select Scholars for China Exchange Program
Army Still Plugging for FDA Approval of Irradiated Meat
"Cooperative Federalism" Proposed for Siting Waste Repositories

RESEARCH NEWS

Plate Tectonics: Hot Spot Implicated in Ridge Formation

AAAS NEWS

New Data Show Uneven Progress for Women and Minorities in Science: B. Vetter; Science Cover Calendar for 1979; AAAS Travelers; Seattle Seminar to Discuss
BOOK REVIEWS

Michael Foster and the Cambridge School of Physiology, reviewed by R. G. Frank, Jr.; The Evolution of Galaxies and Stellar Populations, G. Illingworth; Sedimentation in Submarine Canyons, Fans, and Trenches, R. S. Dietz; Controlling Factors in Plant Development, D. F. Wetherell; Books Received

REPORTS

Volcanically Related Secular Trends in Atmospheric Transmission at Mauna Loa Observatory, Hawaii: B. G. Mendonca, K. J. Hanson, J. J. DeLuisi

Atmospheric Reactions of Polycyclic Aromatic Hydrocarbons: Facile Formation of Mutagenic Nitro Derivatives: J. N. Pitts, Jr., et al.

Growth Lines in a Bivalve Mollusk: Subdaily Patterns and Dissolution of the Shell: J. Gordon and M. R. Carriker

Radio Tracking of a Fin Whale (Balaenoptera physalus): G. C. Ray et al.

Synthesis of Isocyanic Acid from Nitric Oxide over Palladium and Iridium Catalysts: R. J. H. Voorhoeve and L. E. Trimble

Phagocytosis of Light- and Dark-Adapted Rod Outer Segments by Cultured Pigment Epithelium: M. O. Hall.

Sorocarp Development by a Newly Discovered Ciliate: L. S. Olive

Chimpanzee Problem-Solving: A Test for Comprehension: D. Premack and G. Woodruff

Taste Responses in Sheep Medulla: Changes During Development: C. M. Mistretta and R. M. Bradley

COVER

Prototype of the 10-meter sail windmill installed at the campus of the National Aeronautical Laboratory, Bangalore, India. The tower height is 12 meters. The rotary pump is under the platform. This windmill is expected to irrigate 1 hectare of wheat crop with wind speeds averaging 10 kilometers per hour for about 10 hours per day. See page 481. [S. K. Tewari, National Aeronautical Laboratory, Bangalore, India]
Regulation of the Chemical Industry

Recently I visited six of the major industrial laboratories in the United States, including three chemical establishments. I found much that was interesting and at the forefront of science and technology. At the same time, there was much evidence of the impact of federal regulations on industrial research, particularly in the chemical companies. Expenditures for long-range research have declined markedly, but funds for defensive research and development, including toxicology, are sharply higher.

In almost all conversations, chemists alluded to federal regulations. Attitudes ranged from the view that the chemical industry is in mortal peril to the thought that the present trauma will lead to beneficial results both for society and for the industry. Directors of research contritely admitted past shortcomings in the chemical industry's behavior with respect to its products. They particularly regretted inadequate consideration of the long-term fate of substances and were unhappy about careless errors by some users of chemicals. They now recognize that if misuse leads to untoward effects, they will share the onus. Thus there is now a willingness to monitor the use and fate of chemical products all the way to final disposition.

An important trend is an expansion of efforts devoted to toxicology. Companies that already have toxicology laboratories have expanded them. Other companies have established new facilities. In addition, a Chemical Industry Institute of Toxicology has been created, financed by contributions from 36 companies. Precise figures are not available, but the total professional personnel involved industry-wide is now of the order of 1500. The demand for trained toxicologists has far exceeded the supply.

Chemical companies have long been aware of the problems created by toxic substances in the workplace. Some of the lessons were learned inadvertently decades ago at the expense of workers. This led to the establishment, for example, of the Haskell Laboratory of DuPont in 1935. Much of the early work of such laboratories was devoted to studies of acute toxicities. Although some attention was given to effects of chronic exposure, the possible risks of carcinogenicity were not probed deeply.

At the moment, the magnitude of the carcinogenic hazards posed by industrial chemicals is not well known. But the public has gained the impression that the risks are substantial, and the tendency of the government is to take no chances. Thus chemical companies live in fear of sudden drastic action. Many long-term studies are now in progress or have been completed. A typical experiment on a single chemical involves following 800 animals for 2 years and performing pathological examinations on 40 different tissues per animal for a total of 32,000 specimens. In instances where no excess cancer is found in comparison with controls, the outcome is clear. But what of instances similar to the saccharin case in which an extremely large dose seems to produce some cancer? Is there or is there not a threshold dose? Are there detoxifying mechanisms by which the animal or human disposes of small amounts of chemicals which in large doses are carcinogenic? How applicable to humans are studies on microorganisms or rodents?

Uncertainty is compounded by the language of relevant legislation. For example, the opening policy statement of the Toxic Substances Control Act asserts that the regulations are "not to impede unduly or create economic barriers to technological innovation while fulfilling the primary purpose . . . to assure that such innovation and commerce . . . do not present an unreasonable risk." With such a compounding of uncertainty, it seems obvious that in future thousands of toxicologists will obtain their livelihood in the laboratories while bevy of lawyers will grow rich on litigation. But perhaps the outcome will be more constructive. From the studies we may develop general principles about the functioning of living systems. The chemical industry may emerge more capable of discharging its responsibilities to society and accordingly stronger and more acceptable.