Human Serum Fucosyltransferase and Tumor Therapy

Bauer et al. have described an elevation in plasma fucosyltransferase activity in plasma of patients with neoplastic disease (7). Three assays were performed: transfer of fucose onto endogenous plasma acceptors, transfer of fucose onto the 2'2'-position of the terminal galactose of desialated fetuin (α2-fucosyltransferase), and transfer of fucose onto the 3'-position of the terminal N-acetylglucosamine of desialodegalactofetuin (α1-fucosyltransferase). While the data cannot be disputed, it appears that the enzymatic activities they actually measured are different from those that they described.

An acceptor with terminal galactose and subterminal N-acetylgalactosamine such as desialated fetuin can accept fucose in two positions: the 2'-site on the terminal galactose and the 3'-unsubstituted position on the subterminal N-acetylgalactosamine (2). Only with a different acceptor such as phenyl-β-galactoside (J) can α2-fucosyltransferase be measured unambiguously. The use of an acceptor with a terminal N-acetylglucosamine appears to measure transfer of fucose onto an internal asparagine-linked N-acetylgalactosamine (4), not onto the 3'-position of the terminal N-acetylglucosamine. Watkins does mention transfer onto the 3'-position in the summary of (2), but in the text and in (5), it is clear that the author means an N-acetylgalactosamine residue subterminal to galactose. What Bauer et al. call α2-fucosyltransferase is therefore a mixture of α2- and α2-fucosyltransferases, while the so-called α2-fucosyltransferase is something else.

Since plasma may contain endogenous acceptors for several fucosyltransferases, it seems unlikely that the activity of any individual enzyme can be deduced by subtraction of an "endogenous" level of activity from results obtained by addition of an exogenous acceptor. Furthermore, we have shown (6) that N-acetylgalactosamine terminal acceptors that the plasma level of fucosyltransferase rises markedly during bone marrow hyperplasia after chemotherapy. A specific inhibitor of endogenous activity of other plasma fucosyltransferases was used in the latter study. In order to delineate fucosyltransferase elevation related to neoplasia from an elevation related to regeneration of a normal marrow population after drug therapy, it is therefore necessary to know your acceptor.

DAVID KESSEL
Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201

References and Notes
7. October 1978

Kessel's comment (1) on our report (2) was surprising since he and his co-workers use, in principle, the same assay system as we (3).

The hydrogen ion-dependent fucosyltransferase adds fucose primarily to the terminal galactose residues of both glycoproteins (4) and glycolipids (5) by forming (1 → 2) linkages. Only when using a low molecular weight acceptor such as N-acetylgalactosamine are considerable amounts also transferred to N-acetylgalactosamine (6). Though N-ethylmaleimide (NEM) preferentially, not exclusively, inhibits α2-fucosyltransferase, α1-fucosyltransferase can be affected as well. It has been recently reported (7) that in a patient with leukemia, the activity of α2-fucosyltransferase was inhibited by 55 percent in the presence of 3.3 mM NEM. The determinations are further complicated by our observations that (i) NEM can be less effective when inhibiting serum α2-fucosyltransferase of patients with recurrent malignancy, and (ii) a fucosyltransferase with different characteristics probably occurs in the serum of tumor patients (8). Thus, that addition of NEM is suitable when differentiating unequivocally between the two major human fucosyltransferases is probably restricted to normal subjects and certain cases of neoplasia.

We determined the acceptor for α2-fucosyltransferase from the literature (5, 6). Our report (2) states that α2-fucosyltransferase adds L-fucose at the C-3 atom of N-acetylgalactosamine. Since a terminal N-acetylgalactosamine on the acceptor is essential for enzyme activity (9), and since this prerequisite is fulfilled by desialodegalactofetuin, desialofetuin (as used as the acceptor for α2-fucosyltransferase) is a very poor acceptor for α1-fucosyltransferase.

The observation of elevated plasma fucosyltransferase activity during bone marrow hyperplasia does not contradict our findings. We had previously demonstrated (10) that a substantial increase in serum glycosyltransferases (apart from deterioration of cell function) is due to proliferative and secretory processes of neoplastic or even normal cells.

CHRISTIAN H. BAUER
Biochemicals Institute of the Albert-Ludwigs-University, Herman-Herder-Str. 7, D-7800 Freiburg, Germany

References and Notes
8. C. Bauer, W. Reutter, E. Kötting, K. Fleischmann, K.-P. Erhart, W. Gerok, in Carcino-Endo- 
10. W. Reutter and C. Bauer, in Morris Hepatomas: Mechanism of Regulation, W. Criss and H. P. 

7 February 1979
Human Serum Fucosyltransferase and Tumor Therapy
CHRISTIAN H. BAUER

Science 204 (4393), 647.
DOI: 10.1126/science.204.4393.647-a

Use of this article is subject to the Terms of Service