LETTERS

Antibiotics: Use in Animal Feed: R. Novick; Food Safety Report: C. Grobstein; Recombinant DNA Experiments: P. Siekevitz; Grants and the "Track Record": R. T. Prehn; Tea with Milk: J. F. Morton

EDITORIAL

Mission to Jupiter and Satellites

ARTICLES

Voyager Telecommunications: The Broadcast from Jupiter: R. E. Edelson et al.

NEWS AND COMMENT

SALT Supporters of Two Minds on Treaty

Briefing: DNR Given Up as a Loser, Citizen Support Lacking; Creationists Sue to Ban Museum Evolution Exhibits; Teddy Roosevelt's Name Invoked in Alaska Vote

UN Meeting in Vienna Unlikely to Be a Waltz

Oil Pinch Stirs Dreams of Moonshine Travel

Brown Down on Weapons Link

RESEARCH NEWS

Hazardous Wastes Technology Is Available

Isadore Singer and Differential Geometry

AAAS NEWS

Science 80 to Premier in Fall; Energy Seminar Slated for Raleigh; R & D Colloquium; Other June Meetings; Women in Science and Math; AAAS Annual Elections: Preliminary Announcement

ANNUAL MEETING

Call for Contributed Papers; Instructions for Contributors
BOOK REVIEWS

The Plastids, reviewed by R. S. Alberte; Modern and Ancient Lake Sediments, J. D. Milliman; Spatial Pattern in Plankton Communities, M. R. Reeve; Topics in Surface Chemistry, P. J. Estrup; Structure and Collisions of Ions and Atoms, E. Merzbacher; Books Received 941

REPORTS

Voyager 1 Encounter with the Jovian System: E. C. Stone and A. L. Lane 945


The Jupiter System Through the Eyes of Voyager 1: B. A. Smith et al. 951

Discovery of Currently Active Extraterrestrial Volcanism: L. A. Morabito et al. 972

Infrared Observations of the Jovian System from Voyager 1: R. Hanel et al. 972

Radio Science with Voyager 1 at Jupiter: Preliminary Profiles of the Atmosphere and Ionosphere: V. R. Eshleman et al. 976

Extreme Ultraviolet Observations from Voyager 1 Encounter with Jupiter: A. L. Broadfoot et al. 979

Magnetic Field Studies at Jupiter by Voyager 1: Preliminary Results: N. F. Ness et al. 982

Plasma Observations Near Jupiter: Initial Results from Voyager 1: H. S. Bridge et al. 987


Voyager 1 Planetary Radio Astronomy Observations Near Jupiter: J. W. Warwick et al. 995

Low-Energy Charged Particle Environment at Jupiter: A First Look: S. M. Krimigis et al. 998

Voyager 1: Energetic Ions and Electrons in the Jovian Magnetosphere: R. E. Vogt et al. 1003

Infrared Images of Jupiter at 5-Micrometer Wavelength During the Voyager 1 Encounter: R. J. Terrile et al. 1007

COVER

Images acquired by Voyager 1 during its dash through the Jovian system were assembled in this abstraction to portray the diversity of phenomena to be found there. Jupiter, with the Great Red Spot seen in the southern hemisphere, is surrounded by the four Galilean satellites. Io, the innermost, is mottled by bizarre colors and is now known to be intensely volcanically active. Europa, the brightest, displays pastel markings crossed by global ribbons, perhaps reflecting tectonics of immense scale. Ganymede, third from Jupiter, shows a complex network of intersecting stripes that bound peculiar grooved terrain. Callisto, the outermost, displays an ancient cratered surface with enormous vestigial concentric ring systems, apparently the last remnants of tremendous impacts into its soft icy crust. See page 913; first
Mission to Jupiter and Satellites

This issue contains first scientific reports of the Voyager 1 mission to Jupiter and its satellites. It also has a description of the telecommunication system that maintains two-way transfer of information between Earth and a spacecraft 700 million kilometers away. The excellence in communication equipment on Voyager 1 and the new results obtained mark the mission as a high point in this country’s space effort. At a moment when unease and gloom abound, it is good to have evidence of continued competence among us.

To most people, the payoff of the mission is in the form of striking pictures of Jupiter and its satellites. For scientists, results from other observing equipment on Voyager 1 are also important. A smaller group is interested in how the results were communicated back to Earth and in the control of the spacecraft in its travels through space. The reception of large numbers of pictures and other information was made possible by advances in communications. On Earth some radio stations broadcast with a power of 50,000 watts, yet one’s radio may not receive such a station 100 kilometers away. Voyager 1 transmits with a power of 10 to 30 watts, yet its signals are dependable received at a distance of 700 million kilometers. The circumstances in the two instances are quite different; nevertheless, the dependable reception of signals from deep space is a technological feat. Part of the trick is a good directional antenna at the spacecraft accurately pointed at Earth. Even so, the signal energy reaching Earth is less than 10⁻¹⁸ watt per square meter, and this weak signal is detected reliably in spite of all manner of background electromagnetic noise. This capability is the result of steady improvement over the past 15 years. The present system is a factor of 150,000 better than that used with the 1965 Mariner mission to Mars.

Substantial evolution has also occurred in spacecraft. Voyager 1 has incorporated many improvements over its Mariner predecessors. This is especially true of the computer systems on board. The changes reflect opportunities created by advances in microelectronics. They are also responsive to needs created when a spacecraft is far away. The transit time for a message from Earth to Jupiter is about 40 minutes. Onboard computers must control the functioning of Voyager 1, including the scheduling and pointing of its scientific equipment. It is also desirable to preserve flexibility to meet contingencies. For example, during the 18 months of travel from Earth to Jupiter, the planet’s restless atmosphere was observed from Earth. To optimize picture-taking in the vicinity of Jupiter, it was necessary to reprogram an onboard computer by commands from Earth. This can be done only slowly but the flexibility proved to be very useful.

As can be seen in this issue, a large amount of information was accumulated about Jupiter and its satellites. Particularly striking were some of the 18,000 photographs of the Jupiter system including color pictures of Jovian clouds and images of Jovian lightning, auroras, and meteor trails. Jupiter, with its large magnetic field, energetic particles, electromagnetic emissions, and complex atmospheric motions, will continue to be a closely studied object. On this occasion, however, photographs and other observations of the Jovian satellites produced the most novel information. For example, the two outer satellites Ganymede and Callisto are ice-covered and show preserved craters, apparently formed 4 billion years ago when an intense episode of cratering occurred in the solar system. The satellite Io has no ice and impact craters, but has been the scene of volcanic activity which continues. Plumes of dust and vapor reaching up to 285 kilometers were noted. The internal heat in Io seems to be due to tidal friction rather than radioactive activity, and the surface of the satellite is renewed at least every 10 million years.

Our generation is likely to be the first to understand how the solar system was formed. The Voyager missions move us toward that goal.

—Philip H. Abelson