CONTENTS.

Penetrating Radiation associated with X-rays: Professor Carl Barus 561

The Biological Laboratory of the Bureau of Fisheries at Woods Hole, Mass., Report of Work for the Summer of 1904: Professor Francis B. Sumner 566

Albatross Expedition to the Eastern Pacific: Alexander Agassiz 572

Scientific Books:—
Clerke's Problems in Astrophysics: Professor Edwin B. Frost. Lacroix on La Montagne Pelée et ses éruptions: Ernest Howe 574

Scientific Journals and Articles 578

Societies and Academies:—

Discussion and Correspondence:—
The Western Sierra Madre Mountains: Dr. Edmund Otis Hovey. The Metric System again: Dr. W. J. Spellman. New American Ostracoda: Arthur E. Beardsley 585

Special Articles:—
The Distribution of Fresh-Water Faunas as an Evidence of Drainage Modifications: Dr. Douglas Wilson Johnson 588

Current Notes on Meteorology:—
Long-range Weather Forecasts; The Low Relative Humidity of Winnipeg in Winter; Jelinek's Meteorological Instructions; Hann's Lehrbuch der Meteorologie; A New Rain Gauge: The Micro-barograph; Notes: Professor R. DeC. Ward 592

A Contemplated Magnetic Survey of the North Pacific Ocean by the Carnegie Institution: Dr. L. A. Bauer 594

The Elizabeth Thompson Science Fund: Professor Charles S. Minot 596

Medals and Awards of the Royal Geographical Society 597

Professor Wilhelm Ostwald at Harvard University 598

A Conference of Anatomists 598

Scientific Notes and News 599

University and Educational News 600

MSS. intended for publication and books, etc., intended for review should be sent to the Editor of SCIENCE, Corri
don-on-Hudson, N. Y.

Penetrating Radiation Associated with the X-rays.

As the following investigation is made with the aid of nuclei, certain of their properties bearing on the present subject will first have to be specified. Exhaustions are preferably made at a pressure difference (δp) just below the point (to be called fog limit) at which dust-free non-energized saturated air condenses without foreign nuclei. δp depends on the particular apparatus used.

1. Fleeting Nuclei.—Let the X-radiation to which the dust-free air is exposed be relatively weak, so that the density of ionization may remain below a certain critical value. The nuclei observed on condensation are then very small and they require a high order of exhaustion, approaching the fog-limit of non-energized air. They are usually instantaneously generated (within a second) by the radiation, so that their number is definite independent of the time of exposure. They decay in a few seconds after the radiation ceases; i.e., roughly to one half their number in two seconds, to one fifth in twenty seconds in the usual exponential way. I fancy that these nuclei are what most physicists would call ions; but nevertheless the particles are not of a
Editor's Summary

This copy is for your personal, non-commercial use only.

Article Tools Visit the online version of this article to access the personalization and article tools: http://science.sciencemag.org/content/21/537.citation

Permissions Obtain information about reproducing this article: http://www.sciencemag.org/about/permissions.dtl