LETTERS
Cryptography, NSF, and NSA: D. N. Langenberg; R. Mandelbaum;
Participatory Management: E. M. Glaser 960

EDITORIAL
Science and Engineering Education. 965

ARTICLES
The Next Step in Fusion: What It Is and How It Is Being Taken: J. F. Clarke 967
Silent Nucleotide Substitutions and the Molecular Evolutionary Clock: T. H. Jukes .. 973
Prostaglandins, Arachidonic Acid, and Inflammation: F. A. Kuehl, Jr., and
R. W. Egan .. 978
Science and the University: A. B. Giamatti 984

NEWS AND COMMENT
The Reagan Years: Environmentalists Tremble. 988
Oil Companies Suppress German Synfuels Formula, Says Hollywood 990
The Reagan Years: Regrouping on Education. 991
Briefing: OSHA Backs Away from Strict Lab Rules; Classified Research;
Passive Solar Homes Endorsed; Buettner-Janusch Is Sentenced 992
Police Science and Psychics. 994

RESEARCH NEWS
Government/Industry Dispute Brain Tumor Risk. 996
Interferon Congress Highlights 998
Where Is the Hepatitis C Virus?. 999

ANNUAL MEETING
Tours; Reservation Form for Tours 1001

BOOK REVIEWS
Bastardy and Its Comparative History, reviewed by M. A. Vinovskis; Behind Every
Successful Man, A. Levine; Electron-Molecule Scattering, J. N. Bardsley;
Objects of High Redshift, D. E. Osterbrock; Books Received 1003

REPORTS
Sequence of Pumiceous Tephra Layers and the Late Quaternary Environmental
Record Near Mount St. Helens: C. J. Heusser and L. E. Heusser 1007
AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE

Calcite-Impregnated Defluidization Structures in Littoral Sands of Mono Lake, California: P. Cloud and K. R. Lajoie .. 1009
Io: Ground-Based Observations of Hot Spots: W. M. Sinton et al. 1015
Internal Winds in Water Lilies: An Adaptation for Life in Anaerobic Sediments: J. W. H. Dacey ... 1017
Opposite Polarity of Filipin-Induced Deformations in the Membrane of Condensing Vacuoles and Zymogen Granules: L. Orsi et al. 1019
Stimulation of DNA and Collagen Synthesis by Autologous Growth Factor in Cultured Fetal Rat Calvaria: E. Canalis, W. A. Peck, L. G. Raisz 1021
Retinal Tumor Induced by the Baboon by Human Adenovirus 12: N. Mukai et al. ... 1023
Isolation of 01 Serovars of Vibrio cholerae from Water by Serologically Specific Method: K. W. Hranitzky et al. .. 1025
Latency of Herpes Simplex Virus in Absence of Neutralizing Antibody: Model for Reactivation: T. Sekizawa et al. .. 1026
Insulin Receptors in Hepatocytes: Postreceptor Events Mediate Down Regulation: J. F. Caro and J. M. Amatruda .. 1029
Anticonvulsants Specific for Petit Mal Antagonize Epileptogenic Effect of Leucine Enkephalin: O. C. Sneed III and L. J. Bearden 1031
Perception of Numbers by Human Infants: P. Starkey and R. G. Cooper, Jr. 1033
Associative Learning in Premature Hydranencephalic and Normal Twins: D. S. Tuber et al. ... 1035
Limulus Brain Modulates the Structure and Function of the Lateral Eyes: R. B. Barlow, Jr., S. C. Chamberlain, J. Z. Levinson 1037
Classical Conditioning: Induction of Luteinizing Hormone and Testosterone Secretion in Anticipation of Sexual Activity: J. M. Graham and C. Desjardins .. 1039
Optimal Behavior: Can Foragers Balance Two Conflicting Demands?: A. Sih . 1041
Technical Comments: Effect of Urban Sources on Acid Precipitation in the Western United States: T. J. Kelly and D. H. Stedman; W. M. Lewis, Jr., and M. C. Grant .. 1043

PRODUCTS AND MATERIALS

Incubator; Video Graphic Copier; Peristaltic Pump; Magnetic Tape System; Fluoroptic Thermometry; Electrolyte Analyzers; Spectrometer; Thin-Layer Plates; Literature .. 1044

COVER

Towers of porous calcareous tufa, the largest 4.3 meters in height, rise above basal sand columns to about 6 meters above present south shore of Mono Lake, California. They were precipitated where calcium-rich artesian waters entered a once fuller alkaline lake, now lowered by evaporation and diversion of recharge waters to Los Angeles. See page 1009 [Preston Cloud, University of California, Santa Barbara].
Science and Engineering Education

In comparison with other advanced countries, the United States is becoming a nation of scientific illiterates. Our principal commercial and military rivals have recognized that future superiority will rest heavily on competence in applied science and engineering, and they are preparing their young people for the world of the future. For example, in Japan instruction in science begins in the first grade. From the third through the ninth grades, science and mathematics are required subjects and constitute two of the four major courses taught. Most students who intend to go on to universities continue to take science and mathematics courses in upper secondary schools. Their curriculum includes differential and integral calculus and probability and statistics.

Conspicuous examples of American achievements, such as Nobel Prizes or pictures from the Voyager spacecraft, serve to blind the public to the fact that a problem exists here. Actually, the Nobel laureates and the engineers responsible for Voyager are products of an earlier era. During their formative years (the 1940's and 1950's) a different attitude, one more favorable to science and engineering, prevailed in America. Around 1965 the environment for science and engineering began to deteriorate, and while Nobel Prizes still come, our superiority in technology has about vanished.

A recent report prepared by the National Science Foundation and the Department of Education* provides some sobering comments. At a time when the world faces an enormous need for engineers, the United States lags behind Japan, West Germany, and the Soviet Union in the number of engineering graduates per capita. The contrast is especially marked with respect to Japan, where engineering enjoys high prestige and the total number of degrees granted to engineers annually has surpassed that in the United States. In Japan 20 percent of all baccalaureate and about 40 percent of all master's degrees are granted to engineers. This compares with about 5 percent for each of these degree levels in the United States. Moreover, many of the U.S. graduates are foreign nationals.

In Japan an engineering degree is a favorable route to business and social success. The report states that in Japan "only about 50 percent of the engineers produced each year . . . enter the engineering profession. The others become civil servants and managers in industry. Around one-half of the senior civil service holds degrees in engineering or related subjects In industry, about 50 percent of all directors have engineering qualifications."*

The educational situation in Germany is similar to that in Japan, with emphasis on science and mathematics in primary and secondary schools. "The overall picture in Germany is one of a very high level of science and mathematics literacy among college graduates as well as a strong science/mathematics understanding among the general population."

In the Soviet Union students are exposed to an intense mathematics and science curriculum. Algebra and geometry are taught in the sixth and seventh grades, and additional mathematics, including calculus, is part of the high school curriculum. All youngsters are required to complete 5 years of physics and 4 years of chemistry. About five times as many Soviet students as Americans go on to engineering training. The inefficiencies of the Soviet system dissipate much of this advantage, but one can scarcely feel comfortable about the contrast in educational level between the military forces of the U.S.S.R. and the United States.

Our present policy is moving us toward becoming a colonial supplier of raw materials and food to more advanced countries and is placing us in a position of increasing peril. Unfortunately, there is no crisis to alert the public. The one positive factor operating at this time is a strong demand for engineering graduates, which is driving up salaries. Overcoming scientific illiteracy will take decades.—PHILIP H. ABELSON

*National Science Foundation and Department of Education, Science and Engineering, Education for the 1980s and Beyond (Washington, D.C., October 1980).