LETTERS

EDITORIAL
Laboratory Safety

ARTICLES
Prudent Practices for Handling Hazardous Chemicals in Laboratories: B. C. McKusick
The Judiciary: What Role in Health Improvement? D. L. Bazelon

NEWS AND COMMENT
Cabinet Split on Merits of Grain Embargo
EPA and Industry Pursue Regulatory Options
Prior Restraints Recommended
Briefing: Science Subcommittees Get New Chairmen; Air Academy Drops Ban on Sickle Carriers; Budget Cutters Clip Away at Science; Academy Hosts Meeting on Conservation of Monuments
Institute Loses Bid for Hughes's Billions
The Tradition of Hughes Medical: Support of Superior Research

RESEARCH NEWS
Matter, matter everywhere
Ethiopian Stone Tools Are World's Oldest
Prediction of Huge Peruvian Quakes Quashed

BOOK REVIEWS
The Evolutionary Synthesis, reviewed by M. Ruse; Plasticity of Muscle, M. Bárány; Enzymatic Basis of Detoxication, F. P. Guengerich; Comparative Biology and Evolutionary Relationships of Tree Shrews, R. Martin; Lower Wenlock Faunal and Floral Dynamics, R. J. Ross, Jr.; Books Received

Airborne Studies of the Emissions from the Volcanic Eruptions of Mount St. Helens: P. V. Hobbs et al.

Trajectories of the Mount St. Helens Eruption Plume: E. F. Danielsen


Changes in Stratospheric Water Vapor Associated with the Mount St. Helens Eruption: D. G. Murcray et al.

Measurements of Cloud Condensation Nuclei in the Stratosphere Around the Plume of Mount St. Helens: C. F. Rogers, J. G. Hudson, W. C. Kocmond

Filter Measurements of Stratospheric Sulfate and Chloride in the Eruption Plume of Mount St. Helens: B. W. Gandrud and A. L. Laurus

Trace Element Composition of the Mount St. Helens Plume: Stratospheric Samples from the 18 May Eruption: T. Vossler et al.


Absorption of Visible Radiation by Aerosols in the Volcanic Plume of Mount St. Helens: J. A. Ogren et al.

Measurements of the Imaginary Part of the Refractive Index Between 300 and 700 Nanometers for Mount St. Helens Ash: E. M. Patterson

Marine Macrophytes as a Global Carbon Sink: S. V. Smith

Fate and Transport of Dieldrin in Coralville Reservoir: Residues in Fish and Water Following a Pesticide Ban: J. L. Schnoor

Protein Antigens from Staphylococcus aureus Strains Associated with Toxic-Shock Syndrome: M. L. Cohen and S. Falkow

Exercise Hyperpnea and Locomotion: Parallel Activation from the Hypothalamus: F. L. Eldridge, D. E. Millhorn, T. G. Waldrop


Cover Graphic representation of large-scale fluctuations in the ocean and atmosphere referred to as El Niño. The event is characterized by excessively warm ocean water (fourth panel) off the coast of Peru (second panel). During El Niño warm water accumulation is excessive, upwelling ceases completely, and large anchovy fishery (bottom panel) almost ceases. Coastal birds (middle panel), which depend on fish for food, die in large numbers. This natural catastrophe is linked to large-scale variations in the tropical atmosphere (upper panel). See Science, 2 January, page 22. [Design by W. C. Patzelt, Scripps Institution of Oceanography, La Jolla, and Calvin Woo, HUMANGRAPHIC, San Diego.]
American Association for the Advancement of Science

Science serves its readers as a forum for the presentation and discussion of important issues related to the advancement of science, including the presentation of minority viewpoints. Publishing decisions are signed and reflect the individual views of the authors and not official points of view adopted by the AAAS or the institutions with which the authors are affiliated.

Editorial Board

1981: Peter Bell, Bryce Crawford, Jr., E. Peter Geiduschek, Emil W. Haury, Sally Gregory Kohlstedt, Mancur Olson, Peter H. Raven, William P. Slichter, Frederic G. Worden


Publisher

William D. Carey

Editor

Philip H. Abelson

Editorial Staff

Managing Editor

Robert V. Ormes

Business Manager

Hans Nussbaum

Assistant Managing Editor

John E. Ringle

Ellen E. Murphy

News Editor

Barbara J. Cumilton


Administrative Assistants, News: Scherraine Mack, Billie McCue

Assistant Editors: Eleanore Butz, Mary Dorfman, Sylvia Eberhart, Ruth Kulstad

Assistant Editors: Martha Collins, Caitlin Gordon, John Kepple, Editors

Book Reviews: Katherine Livingston, Editor, Linda Da Heiserman

Kegg

Letters: Christine Gilbert

Copy Editor: Isabella Bouldin

Production

Nancy Hartnagle, John Baker; Rose Lower; Holly Bishop; Eleanor Warner; Mary McDaniell, Jean Rockwood, Leah Ryan, Sharon Ryan

Cover, Reprints, and Permissions: Grayce Finger

Editor: Geraldine Crump, Corrine Harris

Guide to Scientific Instruments: Richard G. Sommer

Assistant to the Editors: Susan Elliott, Diane Holland

Membership Recruitment: Gwendolyn Huddle


Advertising Representatives

Director: Earl J. Scherago

Production Manager: Gina Reilly

Advertising Sales Manager: Richard L. Charles

Mural Manager: Herbert L. Burkland


ADVERTISING CORRESPONDENCE: Tenth floor, 1515 Broadway, New York, N.Y. 10036. Phone: 212-730-1030.

Laboratory Safety

Virtually every teaching and research laboratory conducting studies in the natural sciences does so with some measure of risk to personnel. The principal hazards vary from field to field, but there is a widespread use of chemicals, some of which are toxic. Fortunately, the dangers can be minimized if some simple techniques are followed. The procedures are discussed at length in a new report of the National Research Council (NRC).

Highlights of the report are presented (page 777) in this issue of Science.

At one time chemists were often exposed to many chemicals. This was particularly true in academic institutions, where the halls of chemistry buildings usually reeked. But times are changing, and chemistry departments in many universities are cleaning up their act. In this effort they are years behind the major chemical companies. I have visited chemical laboratories in five major companies and in none of them could I detect odors of chemicals. The reason was proper ventilation; chemical operations involving volatile substances were conducted in hoods. Besides exposure through the respiratory system, chemicals can enter the body through the skin or the mouth. Use of gloves and protective clothing can minimize entry through the skin. Personal hygiene, avoidance of mouth pipetting, and use of common sense can prevent entry through the mouth.

Among academic chemists, awareness of potential hazards is leading to changes in laboratory practices both in research and in classwork. Use of properly functioning hoods is becoming more widespread. Student experiments are being changed to use smaller amounts of reagents and to avoid use of toxic chemicals. Substances such as benzene and carbon tetrachloride are disappearing from reagent shelves. Safety officers are being designated to monitor practices in laboratories. Lectures on chemical hazards are being given, and examinations are including questions on safety. In other laboratories, where nonchemists are working, there are fewer facilities for coping with chemical hazards. Means of ventilation, and particularly hoods, are sometimes inadequate. There is also often less knowledge about the toxic properties of various substances.

In the current climate of litigiousness, all organizations dealing with chemicals face dangers of costly suits. These can be minimized if prudent practices are implemented. At present, uniform regulations do not exist, but the Occupational Safety and Health Administration (OSHA) is likely to issue regulations to laboratories soon. Federal and state-supported laboratories are exempt from standards mandated by OSHA and will formulate their own, often differing, regulations. However, OSHA standards will doubtless influence others.

In formulating its policies, OSHA has been constructively influenced by the NRC report. In turn, the motivation for preparing the report was what scientists perceived as a threat to scientific research in this country. Starting in 1977, OSHA had begun to engage in controversial activities and examples of misuse of its power emerged. The quality of information released by OSHA at that time indicated an absence of competence in the agency to deal with chemical matters. Moreover, the top administrator, Eula Bingham, did not respond to offers of assistance from Philip Handler, the president of the National Academy of Sciences. Scientists feared that unrealistic regulations would be promulgated. In particular, there was concern that OSHA would impose on university laboratories the kinds of regulations that would be issued for production plants where workers are exposed to a chemical 40 hours a week, year after year.

An OSHA comment in the Federal Register on 22 January 1980 indicates that the agency now recognizes that there may be a difference between university laboratories and production plants. When OSHA publishes its regulations scientists can determine how much the agency has learned during the past 4 years. If it has improved its posture, at least part of the credit will be due to the NRC report.—Philp H. Abelson