LETTERS

EDITORIAL

Research Equipment Acquisition: L. M. Branscomb 877

ARTICLES

Tectonics and Evolution of Venus: R. J. Phillips et al. .. 879
The Mutation Component of Genetic Damage: J. F. Crow and C. Denniston 888
Conflicting Objectives in Regulating the Automobile: L. B. Lave 893

NEWS AND COMMENT

New A-Bomb Studies Alter Radiation Estimates ... 900
Technology Transfer Reappraised .. 902
Science Adviser Post Has Nominee in View ... 903

Briefing: Mormons Rebel on MX; A First Brush with New Broom at NAS; Breeder Stumbles in House; UCLA Designing Big Agent Orange Study; Court Gives Blessing to Hospital of Faith Healer ... 904
News of Bone Research Causes Fracture .. 906

Point of View: Leon Rosenberg on the “Human Life” Bill 907

RESEARCH NEWS

Cultural Diversity Tied to Genetic Differences .. 908

BOOK REVIEWS

The Sahara and the Nile and Prehistory of the Eastern Sahara, reviewed by W. R. Farrand; Soviet and Western Anthropology, M. J. Swartz; Fleas, R. E. Lewis; Gene Expression, R. D. Cole; Books Received ... 911

REPORTS

Physical Effects of Vehicular Disturbances on Arid Landscapes: R. M. Iverson et al... 915
Photoperiodic Control and Effects of Melatonin on Nonshivering Thermogenesis and Brown Adipose Tissue: G. Heldmaier et al. ... 917
Cystinuria in the Maned Wolf of South America: K. C. Bovée et al. 919
Membrane Fusion Through Point Defects in Bilayers: S. W. Hui et al. 921
Tumor Shedding and Coagulation: H. F. Dvorak et al. 923
Elastin Fragments Attract Macrophage Precursors to Diseased Sites in Pulmonary Emphysema: G. W. Hunninghake et al. 925
Toxicity of Angular Furanocoumarins to Swallowtail Butterflies: Escalation in a Coevolutionary Arms Race?: M. Berenbaum and P. Feeny 927
Transmitter Sensitivity of Neurons Assayed by Autoradiography: D. Yoshikami 929
Zooplankton Fecal Pellets Link Fossil Fuel and Phosphate Deposits: K. G. Porter and E. I. Robbins 931
Didemnins: Antiviral and Antitumor Depsipeptides from a Caribbean Tunicate: K. L. Rinehart, Jr., et al. 933
Gated Sodium-23 Nuclear Magnetic Resonance Images of an Isolated Perfused Working Rat Heart: J. L. DeLayre et al. 935
Micromolar Calcium Stimulates Proteolysis and Glutamate Binding in Rat Brain Synaptic Membranes: M. Baudry et al. 937
Protozoan Parasite of Humans: Surface Membrane with Externally Disposed Acid Phosphatase: M. Gottlieb and D. M. Dwyer 939
Activation of the Transforming Potential of a Normal Cell Sequence: A Molecular Model for Oncogenesis: D. G. Blair et al. 941
Opiate Withdrawal in utero Increases Neonatal Morbidity in the Rat: L. Lichtblau and S. B. Sparber 943
Prenatal Withdrawal from Opiates Interferes with Hatching of Otherwise Viable Chick Fetuses: M. Kuwahara and S. B. Sparber 945
Speech Perception Without Traditional Speech Cues: R. E. Remez et al. 947
Mate Selection and Behavioral Thermoregulation in Fowler’s Toads: L. Fairchild 950
Inferotemporal Neurons Distinguish and Retain Behaviorally Relevant Features of Visual Stimuli: J. M. Fuster and J. P. Jervey 952
Peripherally Administered Reduced Pterins Do Enter the Brain: G. Kapatos and S. Kaufman 955
Synaptic Excitation May Activate a Calcium-Dependent Potassium Conductance in Hippocampal Pyramidal Cells: R. A. Nicoll and B. E. Alger 957
Rapid Forgetting of a Spatial Habit in Rats with Hippocampal Lesions: R. Thompson 959

Amino Acid Analyzer; Solvent Recovery Still; Fraction Collector; Liquid Chromatography Detector; Fume Hood; Identification of Enteric Bacteria; Ergometers for Muscle Physiology; Evaporators; Literature 961

COVER
Hillslope in Jawbone Canyon, western Mojave Desert, California, has been severely disturbed by off-road vehicle use. Modification of surface and subsurface soil properties has resulted in conspicuous accelerated erosion on the 280-meter-long slope. See page 915. [Howard Wilshire, U.S. Geological Survey, Menlo Park, California]
Research Equipment Acquisition

Instrumentation defines the cutting edge of experimental and observational science. Scientists invent their own tools of discovery, quickly incorporating new phenomena into new instrumentation with which to press forward the search. Concurrently, the new analytical principles are reversed to provide new tools for design and process control. Thus yesterday’s scanning electron microscope becomes tomorrow’s electron beam mask generator for integrated circuits. The dynamics of the concurrent advances in scientific instrumentation and industrial technology lies at the heart of the American success story in both arenas.

Unhappily, this process is no longer as healthy in the United States as it once was. Instrumentation leadership has migrated abroad in one class of instruments after another. The obsolescence of research equipment in our universities threatens the rapid progress of science itself. Few engineering schools provide their students to the equipment they should be expected to master in industry. Technical progress in materials science and engineering now requires access to a large number of sophisticated instruments, costing $100,000 and up. Scientists have had to learn to share expensive instruments and to set priorities for major facilities within their fields.

The National Science Board has for several years sought to give priority to critical equipment and facilities. Unfortunately, a $100-million addition to the National Science Foundation budget for research and instructional equipment came at a time when the pressures to bring government expenses under control have forced it out of the revised budget for fiscal year 1982.

The pattern of periodic national equipment crisis must be broken. Universities must find more responsive and flexible means of allocating their limited research funds between salary and equipment costs. They need new sources of capital to supplement federal appropriations. The instrumentation industry needs to be given incentive to innovate with daring new instrumentation ideas, knowing that they will be rapidly tried out by demanding and expert researchers.

One way to help achieve this would be to make the Administration’s investment tax credit for equipment used in research clearly available to companies offering leased equipment to nonprofit institutions. This would stimulate the leasing of scientific instrumentation to the research community. Universities might be able to capture some of the financial benefit and make equipment acquisition decisions in response to current needs with lower initial cost and without permanent commitments. New instrumentation ideas would be more readily tested in the marketplace. Older instruments would find their way out of the university research laboratory into less demanding environments.

None of this will work, however, unless the university community takes a different point of view toward equipment acquisition. Many universities purchase instrumentation as though the cost of capital were zero. Motives for purchasing equipment for permanent use by a small group are rational enough—a hedge against discontinuities in research support, administrative simplicity, and the opportunity to modify the equipment without concurrence from others. But a shift to leasing obviates the government’s need to appropriate all of the capital investment up front, diminishes the role of the government contract monitor in equipment selection, and could reduce acquisition time from years to weeks.

Congress must provide sufficient funds to keep our science competitive, and the scientific community needs to look to its instrumentation acquisition strategy in the light of the changing economic environment. For if we cannot keep the U.S. instrumentation industry and the experimental scientists who depend on its capabilities in dynamic good health, not only science but economic progress will suffer.—LEWIS M. BRANSCOMB, Chief, Scientific, International Business Machines Corporation, Armonk, New York 10504, and Chairman, National Science Board