LETTERS
Equivalent Megatons: C. E. Thomas; R. J. Smith; Reactor Decommissioning: C. C. Burwell and A. M. Weinberg; Nonrandom Bubbles: C. F. Bohren; Animals in the Laboratory: D. M. Bowden; Cost of New Journals: J. E. Heath ... 682

EDITORIAL
Scientific Instrumentation: W. A. Fowler and D. C. Shapero 687

ARTICLES
Probing the Structure of the Deep Continental Crust: J. Oliver 689

NEWS AND COMMENT
The Senate's Plan for Nuclear Waste ... 709
National Academy of Sciences Elects New Members .. 710
NIH Developing Policy on Misconduct .. 711
France Readies New Research Law ... 712
Slave Labor on Campus: The Unpaid Postdoc .. 714
Briefing: NAS Calls for Arms Talks; USDA Retreats on Gypsy Moth Front; Edwards Defends Budget Cuts at DOE; Peace Academy Gaining Momentum; GAO Points Up Military Use of Shuttle ... 716

RESEARCH NEWS
Biology Is Not Postage Stamp Collecting .. 718
Gene Family Controls a Snail's Egg Laying .. 720
Exploring Plant Resistance to Insects .. 722
Cancer Cell Genes Linked to Viral onc Cells .. 724

BOOK REVIEWS
Conceptions of Ether, reviewed by K. L. Caneva; The Ammonites, P. D. Ward; Foundations of Northeast Archaeology, B. J. Bourque; Comparative Color Vision, G. S. Wasserman; Books Received ... 725

REPORTS
Microscale Patchiness of Nutrients in Plankton Communities: J. T. Lehman and D. Scavia ... 729
Residual Calcium Ions Depress Activation of Calcium-Dependent Current:
R. Eckert and D. Ewald .. 730

Aircraft Monitoring of Surface Carbon Dioxide Exchange: R. L. Desjardins et al. 733

Autoradiographic Evidence for a Calcitonin Receptor on Testicular Leydig Cells:
A. B. Chausmer, M. D. Stevens, C. Severn 735

Secretion of Newly Taken-Up Ascorbic Acid by Adrenomedullary Chromaffin
Cells: A. J. Daniels et al. .. 737

The Human Genes for S-Adenosylhomocysteine Hydrolase and Adenosine
Deaminase Are Syntenic on Chromosome 20; M. S. Hershfield and
U. Francke ... 739

Adenosine Triphosphate Synthesis Coupled to K+ Influx in Mitochondria:
K. W. Kinnally and H. Tedeschi .. 742

Cellular Mechanism of Neuronal Synchronization in Epilepsy: R. D. Traub and
R. K. S. Wong .. 745

New Dopaminergic and Indoleamine-Accumulating Cells in the Growth Zone of
Goldfish Retinas After Neurotoxic Destruction: K. Negishi, T. Teranishi,
S. Kato ... 745

Identification of the Constant Chromosome Regions Involved in Human
Hematologic Malignant Disease: J. D. Rowley 749

Suppression of Reflex Postural Tonus: A Role of Peripheral Inhibition in Insects:
S. N. Zill and D. T. Moran .. 751

Is Sperm Cheap? Limited Male Fertility and Female Choice in the Lemon Tetra
(Pisces, Characidae): K. Nakatsuru and D. L. Kramer 753

Interdigitation of Contralateral and Ipsilateral Columnar Projections to Frontal
Association Cortex in Primates: P. S. Goldman-Rakic and M. L. Schwartz . . 755

Lipofuscin: Resolution of Discrepant Fluorescence Data: G. E. Eldred et al. 757

Early Chronic Low-Level Methylmercury Poisoning in Monkeys Impairs Spatial
Vision: D. C. Rice and S. G. Gilbert 759

Technical Comments: Global Carbon Monoxide Fluxes: Inappropriate
Measurement Procedures: W. Seiler and R. Conrad; G. W. Bartholomew and
M. Alexander ... 761

Calorimeter; Hybridoma Screening Kits; Cell-Specific Lymphokine; Sample
Processor for Liquid Scintillation Counting; Aquatic Environment Monitor;
Microcomputer and Pulsed Nuclear Magnetic Resonance Analyzer; Protein
Sequencing Solvents; Plotter; Literature...................................... 766

Flying at 50 meters per second, low-flying aircraft are equipped with recently
developed analytical sensors which make possible an accurate and rapid
estimate of crop growth, health, and ultimate yield over large areas. Calcula-
tions are based on the measurement of carbon dioxide and vertical wind
speed at 10 to 30 meters above the growing crop. See page 733. [Research
Program Service, Research Branch, Agriculture Canada, Ottawa, Ontario,
Canada]
Scientific Instrumentation

Prior to 1965, owing to generous support, university research laboratories were well equipped. But with the growing pressure on available funds that began at that time, a pattern of postponing equipment purchases emerged. By 1970, a problem was widely recognized: university scientists were working with obsolescent equipment.

A National Research Council report commissioned by the National Science Board in the early 1970's gave the cost of updating the laboratories as $200 million at that time. With the inflation of the ensuing decade, compounded by the growing complexity and sophistication of instrumentation, that figure has grown to a conservatively estimated $1 billion.

At a recent meeting of an ad hoc Working Group on Scientific Instrumentation convened by the National Research Council, one participant observed: "The problem of instrumentation in our research universities has implications for the whole country.... [W]e are educating a generation of scientists who, when they leave the university, suffer the disadvantages that many people from less developed countries feel when they come to work in a technologically advanced country. This hurts us in a broad range of our activities, both in the defense establishment and in our industrial establishment." He went on to point out that existing scientific and engineering manpower in the universities has outstripped the dollars available for equipment.

But it would not be realistic to try to solve the problem solely by a large infusion of federal funds. The Working Group therefore turned its attention to ways of promoting more effective use of existing resources. A number of leaders of corporate research laboratories participating in the group outlined their procedures for ensuring a balance between manpower and capital expenditures. This stimulated a reassessment by academic participants of institutional arrangements that promote similar rational planning in the academic environment, such as organizing experimental scientists in closely allied areas into research groups with block funding.

The Working Group recommended that several tutorial workshops be organized on a regional level under the auspices of the National Research Council. These workshops would have two objectives: (i) to achieve a more balanced emphasis on provision of modern research instrumentation by revising the policies, mechanisms, and procedures of research support, management, and financing, and (ii) to reduce the current deficit of modern research equipment. Efforts in this direction will be more productive if the research-consuming system shows determination to use its resources more effectively. The work of the Interagency Task Force on Instrumentation led by the National Science Foundation, highlighted by the $30-million initiative from the Department of Defense, was enthusiastically supported. Nevertheless, whatever improvements are accomplished in the management of research, there will still be a substantial backlog of need that can only be addressed by the federal government.

The overall purpose of the workshops, then, would be to inform the university community (researchers, administrators, and trustees) of new approaches to providing and using instrumentation. An exchange of practical experience would be sought, with the hope that the universities could respond to the problem with new initiatives and practices. The regional workshops would form the basis for preparing a policy statement and a call to action that could provide some stability for a decade or longer.

Our country's scientific enterprise is a unique combination of individuals from universities, industrial research laboratories, and government research laboratories. The meeting adjourned with a clear sense that discussions among these three elements of the U.S. scientific enterprise could work to the mutual benefit of all three sectors in the solution of this fundamental problem in experimental science.—William A. Fowler and Donald C. Shapiro, Office of Physical Sciences, National Research Council, Washington, D.C. 20418