LETTERS
Duplicate Publication: L. J. Robinson; R. A. Horne; D. G. Wilson; D. Knapp; W. A. Van Sickle; Funding R & D: E. Milbergs; Interferon Research: P. Siekevitz and S. Pestka 1020

EDITORIAL
International Competition in High Technology 1025

ARTICLES
Measurement of Ultrafast Phenomena in the Femtosecond Time Domain:
C. V. Shank .. 1027
Implication of Nonlinear Kinetics on Risk Estimation in Carcinogenesis:
D. G. Hoel, N. L. Kaplan, M. W. Anderson 1032
The Economics of Small Farms: L. Tweeten 1037

NEWS AND COMMENT
A Controversy on Samoa Comes of Age 1042
German Voters Get a Technological Choice 1045
ARS Floats a Plan 1046
Health Rights Issue Emerges in El Salvador 1047
Briefing: Administration Relents on Social Science Funds; Primate Centers Brace for Protests; Some Haunting Words on Arms Control 1048

RESEARCH NEWS
The Large-Scale Structure of the Universe 1050
How Mammalian RNA Returns to Its Genome 1052
Cloning the Acetylcholine Receptor Genes 1055

R & D COLLOQUIUM
Eight Annual AAAS Colloquium on R & D Policy 1057

BOOK REVIEWS
Mercury’s Perihelion from Le Verrier to Einstein, reviewed by D. H. Devorkin; Archetypes and Ancestors, J. D. Burchfield; Mechanisms of Speciation, D. J. Futuyma; Stereochemistry, W. L. Alworth; Neurotransmitter Vesicles, R. B. Kelly; Books Received 1058
REPORTS

The Giles County, Virginia, Seismic Zone: G. A. Bollinger and R. L. Wheeler

Zeolite Molecular Sieve 4A: Anomalous Compressibility and Volume Discontinuities at High Pressure: R. M. Hazen

Primitive Helium in Diamonds: M. Ozima and S. Zashu

Carbon-13 and Carbon-14 Abundances in Alaskan Aquatic Organisms: Delayed Production from Peat in Arctic Food Webs: D. M. Schell

Lithium, Compression and High-Pressure Structure: B. Olinger and J. W. Shaner

Hysteresis in the Force-Calcium Relation in Muscle: E. B. Ridgway, A. M. Gordon, D. A. Martyn

Dwarf Males in the Teredinidae (Bivalvia, Pholadacea): R. D. Turner and Y. Yakovlev

Extracts of Skeletal Muscle Increase Neurite Outgrowth and Cholinergic Activity of Fetal Rat Spinal Motor Neurons: R. G. Smith and S. H. Appel

Human c-Ki-ras2 Proto-Oncogene on Chromosome 12: A. Y. Sakaguchi et al.

Spermidine Requirement for Cell Proliferation in Eukaryotic Cells: Structural Specificity and Quantitation: C. W. Porter and R. J. Bergeron

Temporal Selectivity in the Central Auditory System of the Leopard Frog: G. Rose and R. R. Capranica

Free-Running Activity Rhythms in the Rat: Entrainment by Melatonin: J. Redman, S. Armstrong, K. T. Ng

Coping and the Stress-Induced Potentiation of Stimulant Stereotypy in the Rat: A. J. MacLennan and S. F. Maier

Technical Comments: Prenatal Food Restriction and Subsequent Weight Gain in Male Rats: M. P. Enns et al.; A. P. Jones and M. I. Friedman

MEETINGS

Gordon Research Conferences: A. M. Cruickshank

PRODUCTS AND MATERIALS

Hemoglobin Buffer; Blood Chemistry Analyzer; Flameless Sterilizer; Sterilization Filter Unit; Test for Manual WBC; Plasma Separator; Air Scrubber; Plasma Coagulation Timer; Literature

COVER

Fluorescein. Fluorescent dye used by ophthalmologists to help identify injuries to the cornea. [Courtesy of Michael D. Isenberg, M.D., Vallejo, California] See page 1095 for program of Gordon Research Conferences.
International Competition in High Technology

The Japanese are moving vigorously toward a national goal of world domination in semiconductors. They recognize that excellence in this area will carry with it leadership in computers, telecommunications, robotics, aerospace, and other high-technology industries. Our government seems paralyzed. Its behavior is in contrast to the financial help and other encouragement that the Japanese government bestows on its electronics industry. In addition to effectively restricting importation of competing items, the Japanese government fosters industrial cooperation in research and development both by authorizing and by subsidizing it.

The United States has tough antitrust laws that in the past have served to stifle cooperation between companies in research. In consequence, there is a tremendous waste of scarce resources of people and excessive duplication of effort in our industrial research. Companies often must rediscover the same phenomena. There are at least two types of applied research. One is highly specific and product-oriented. Companies prefer to keep that work secret from each other. A second type is closely akin to good basic research. Its goal is to work out procedures and production techniques of general applicability. That kind of research and development should be shared and its costs borne by cooperating companies.

A new consortium of companies proposes to do just that. They have agreed to participate in the Microelectronics and Computer Technology Corporation (MCC). Admiral Bobby R. Inman (retired) has been elected president and chief executive officer of the corporation. The founding shareholders are Advanced Micro Devices, Control Data Corporation, Digital Equipment Corporation, Harris Corporation, Honeywell, Motorola, NCR Corporation, National Semiconductor Corporation, RCA, and Sperry Corporation. A substantial number of other companies have expressed interest but are holding back largely because of fear of antitrust proceedings. The Justice Department has been reassuring, but lawsuits are cheap to file and costly to defend.

Initially, MCC will concentrate on four advanced, long-range programs. Their stated objectives include:

- Electronic computer-aided design and computer-aided manufacture (CAD-CAM): Major advances in electronic CAD-CAM design tools will be integrated into a system that encompasses the spectrum of design needs from concept and simulation to the design and layout of microelectronic chips containing up to 10 million elements.

- Software productivity: This MCC program will develop techniques, procedures, and tools based on expert and knowledge-based systems in order to gain an order-of-magnitude improvement in the effectiveness of both systems and application software development processes.

- Advanced computer architecture: This 8- to 10-year program will focus on knowledge-based architectures and artificial intelligence and their applications. Its range of applications includes image analysis and design automation of very large scale parallel computing structures as well as data-flow techniques, pattern recognition and manipulation, and development of expert knowledge and inferencing systems.

- Microelectronics packaging: The objective will be more cost-effective techniques for interconnecting components, using future complex chips that contain 1 million or more circuit elements.

The Bell System and IBM are sufficiently big and entrenched that they are secure for at least a while. But smaller companies such as those in MCC are unlikely to prosper in the longer term if they must go it alone. The Japanese will target their products one by one. These companies have been innovative and have created jobs. A strong MCC would solve part of their future problems by facilitating innovation and cutting costs. Congress should quickly modify antiquated antitrust laws to permit industrial cooperation in applied research.—PHILIP H. ABELSON