LETTERS
Acid Rain Funding: C. Bernabo; Evolution: A Cyclic Argument?: R. E. Grant; Understanding Cancer: H. Rubin; Physics Nobel Prize: J. M. H. Levelt Sengers; M. L. Goldberger; Information Technology: C. M. Goldstein

EDITORIAL

ARTICLES
Cavitands: Organic Hosts with Enforced Cavities: D. J. Cram
The Electric Power Research Institute: C. Starr

NEWS AND COMMENT
Engine Troubles Delay the Space Shuttle
Vietnam's Herbicide Legacy
Science Education Redivivus?
Briefing: House Reviews EPA's Record on Pesticides; Landsat, Space Telescope Suffer Setbacks; Canada Releases Papers on Acid Rain Talks
Ariane Loses One to NASA

RESEARCH NEWS
Computers Track the Path of Plant Evolution
Does California Bulge or Does It Jiggle?
Theory Center Awaits NSF Word on Renewal

AAAS NEWS
Medical Mission to El Salvador Investigates Cases of "Disappeared": K. McCleskey; Guide to Research Activities Available; Plea for Soviet Scientists Lodged; 50-Year Members Acknowledged
BOOK REVIEWS

REPORTS
Correlation of Changes in Gravity, Elevation, and Strain in Southern California: R. C. Jachens et al. ... 1215
Syneresis of Vitreous by Carbon Dioxide Laser Radiation: T. J. Bridges et al. .. 1217
Growth Enhancement of Plants by Femtomole Doses of Colloidally Dispersed Triacontanol: R. G. Laughlin et al. 1219
Exposure to Ethylene Oxide at Work Increases Sister Chromatid Exchanges in Human Peripheral Lymphocytes: J. W. Yager, C. J. Hines, R. C. Spear 1221
Infection of Normal Human Epithelial Cells by Epstein-Barr Virus: I. M. Shapiro and D. J. Volsky .. 1225
Stable Antibody-Producing Murine Hybridomas: R. T. Taggart and I. M. Samloff .. 1228
An Excitatory Amino Acid Antagonist Blocks Cone Input to Sign-Conserving Second-Order Retinal Neurons: M. M. Slaughter and R. F. Miller 1230
Some Neurons of the Rat Central Nervous System Contain Aromatic-L-Amino-Acid Decarboxylase but Not Monoamines: C. B. Jaeger et al. ... 1233
Neuromuscular Patterns and the Origin of Trophic Specialization in Fishes: G. V. Lauder .. 1235
Dorid Nudibranch Elaborates Its Own Chemical Defense: G. Cimino et al. ... 1237
Technical Comments: Rheumatoid Factors and Chagas’ Disease: H. R. A. Cabral; A. B. Clarkson, Jr. and G. H. Mellow; Mass Extinctions in the Fossil Record: J. F. Quinn; D. M. Raup, J. J. Sepkoski, Jr., S. M. Sigler 1238

PRODUCTS AND MATERIALS
Scanning Ion Microscope; Accessory for FTIR Analysis of Liquids; Spectrophotometer; Spectrometer; Automated Liquid Chromatography; NMR Spectrometers; Specimen Preparation for X-ray Diffraction; Filter System for Gas Chromatograph; Gas Chromatograph-Mass Spectrometer; Chromatography Data System; Pyrolysis Mass Spectrometer; NMR Spectrometer for Solids; Variable Wavelength Detector; Dual Variable Wavelength Detector; Ultraviolet-Visible Spectrophotometer; Literature 1242

COVER
Simulated vase, assembled from scale molecular model, inspired a two-step synthesis of the compound it represents. The enforced concave interior of the compound makes it a cavitand (a molecular container) capable of hosting guests of moderate molecular dimensions. See page 1177. [Donald J. Cram, Department of Chemistry, University of California, Los Angeles 90024]
Progress Report on Engineering Education

The need for action to meet the national crisis in engineering education remains acute. That is a chief conclusion of a follow-up report on the National Engineering Action Conference (NEAC) held last April. The report was based in part on a survey of 32 engineering deans conducted by the Project on the Engineering College Faculty Shortage. The deans agreed, usually by large margins, that:

- The engineering faculty shortage remains critical.
- Engineering schools are still losing faculty to industry, though at somewhat lower rates.
- Engineering faculty salaries are being raised.
- Graduate enrollment is noticeably increasing.
- Equipment and facility problems are beginning to be addressed.

Much remains to be done. As noted in a recent report, the present dangers to the quality of engineering education have been masked by the abilities of the students accepted by the engineering schools. Administrators now have the dubious luxury of being even more selective. Thousands are being turned away as the engineering schools struggle to maintain educational quality by balancing resources against enrollments.

While the nation strives to upgrade industrial productivity, expand employment, and bolster national security, the engineering schools are being forced to forgo invaluable opportunities to produce young engineers with educations commensurate with their talents. Between 1975–1976 and 1980–1981, the ratio of students to faculty at most institutions shot up 30 to 50 percent. In overcrowded lecture halls, students are seen but not heard. In cramped laboratories, where experimental work deteriorates into mere demonstration, students may look but not touch. And with grossly inadequate capital budgets at the schools, students can read about state-of-the-art equipment but almost never use it.

There are, however, tangible signs of progress. At the state level, the Project on the Engineering College Faculty Shortage has cataloged more than 50 initiatives proposed to state governments by local academics, industry, and the professional societies. Almost half of these have brought funding by state governments, and many entail joint funding with industry. A similar catalog shows that industry has committed at least $75 million to meeting the problem in the form of faculty grants, fellowships, equipment donations, and university-industry cooperative research agreements. To this can be added IBM’s new $50 million program to support education in manufacturing systems engineering. At the federal level, write-off provisions in the Economic Recovery Tax Act of 1981 have stimulated equipment donations to colleges and universities. And the National Science Foundation and the Department of Defense have expanded their programs-in-aid to engineering education.

In short, within this diverse, pluralistic nation, the movement to protect the quality of engineering education is gaining momentum. But the needs still far outweigh the resources being applied. In the few months since NEAC, perhaps the most hopeful sign is the growing realization that all the sectors involved can and must help resolve the situation. Many models exist, including the “action examples” produced by NEAC and those collected by the Project on the Engineering College Faculty Shortage. In reaching our pressing national goals, success will depend to a great degree on how widely and well these models are translated into further action.

—EDWARD E. DAVID, JR., President, Exxon Research and Engineering Company, Florham Park, New Jersey 07932