LETTERS
Nuclear Arms Buildup: G. Alcaino and W. Liller; ACDA Staffing: H. F. Cooper, Jr.; Supplemental Teachers of Science and Mathematics; J. C. Stanley and W. G. Durden; F. J. Rutherford

EDITORIAL
Large-Scale Extinctions

ARTICLES
The Developing Technology of Gas Separating Membranes: J. M. S. Henis and M. K. Tripodi
Radiation Exposures in Utah from Nevada Nuclear Tests: H. L. Beck and F. W. Krey
Retrieval of Information from Long-Term Memory: J. R. Anderson

NEWS AND COMMENT
Coping with Fraud: The Darsee Case
Wastes Seep Round the Law
White House Names New EPA Chief
Revisions in Cancer Policy
Briefing: Hit Lists Claim a Victim at EPA; Burford Ignored Advice on DOE Reactor; Industry Sets Conditions for Funding Clinch River

RESEARCH NEWS
The Race to Predict Next Week's Weather
Plants' Resistance to Herbicide Pinpointed
IBM Images Surfaces by Electron Tunneling

ANNUAL MEETING
Preconvention Program; Schedule of Contributed Papers; Meeting Information; Map of Downtown Detroit; Tours; AAAS Science Film Festival; Travel Information; Advance Registration and Hotel Reservation Forms
The Separation of Madagascar and Africa: P. D. Rabinowitz, M. F. Coffin, D. Falvey .. 67

Fragile Sites in Chromosomes: Possible Model for the Study of Spontaneous Chromosome Breakage: P. B. Jacky, B. Beek, G. R. Sutherland 69

Myoglobin Diffusion in Bovine Heart Muscle: D. J. Livingston, G. N. La Mar, W. D. Brown .. 71

Blood Cell Surface Changes in Drosophila Mutants with Melanotic Tumors: T. M. Rizki and R. M. Rizki .. 73

Plant Chimeras Used to Establish de novo Origin of Shoots: R. Norris, R. H. Smith, K. C. Vaughn .. 75

Insulin-Like Growth Factors: A Role in Growth Hormone Negative Feedback and Body Weight Regulation via Brain: G. S. Tannenbaum, H. J. Guyda, B. I. Posner .. 77

Trypsin Inhibition by Tapeworms: Antienzyme Secretion or pH Adjustment?: G. L. Uglen and J. J. Just .. 79

Normalization of Depressed Heart Function in Rats by Ribose: H.-G. Zimmer .. 81

Adenylate Cyclase Activation Shifts the Phase of a Circadian Pacemaker: A. Eskin and J. S. Takahashi .. 82

Bidirectional Transmission at the Rectifying Electrotonic Synapse: A Voltage-Dependent Process: C. Giaume and H. Korn .. 84

Mechanical Action of the Intercostal Muscles on the Ribs: A. De Troyer, S. Kelly, W. A. Zin .. 87

Tumor Promotion by Phorbol Esters in Skin: Evidence for a Memory Effect: G. Fürstenberger, B. Sorg, F. Marks .. 89

Morphological Basis of Long-Term Habitation and Sensitization in Aplysia: C. H. Bailey and M. Chen .. 91

Selection, Outbreeding Depression, and the Sex Ratio of Scale Insects: D. N. Alstad and G. F. Edmunds, Jr .. 93

Early Morning Insomnia with Rapidly Eliminated Benzodiazepines: A. Kales et al. .. 95

Shadows of Thought: Shifting Lateralization of Human Brain Electrical Patterns During Brief Visuomotor Task: A. S. Gevins et al. .. 97

A Functional Role for an Opiate System in Snail Thermal Behavior: M. Kavaliers, M. Hirst, G. C. Teskey .. 99

Mechanical Measurement of Red Cell Membrane Thickness: R. M. Hochmuth et al. .. 101

COVER

Artist's conception of Renaissance Center, Detroit, Michigan, site of the AAAS Annual Meeting, 26–31 May 1983. See page 45 for information about the program. [Steve Shepherd, Gaithersburg, Maryland]
Large-Scale Extinctions

The earth has been the scene of many extinctions during its long history. Some of them have occurred relatively slowly and are readily explained, for example, by gradual large-scale climatic changes or the appearance of successful competitors for ecological niches. But extinctions have occurred that have involved a large fraction of the existing life-forms. Suggestions have been made that such events might have been due to impacts of large bodies from elsewhere in the solar system. However, it was only a few years ago that evidence was presented for the simultaneity of a very large asteroid impact and extinctions at the end of the Cretaceous period (65 million years ago).*

The evidence took the form of a very large iridium anomaly in a thin layer in marine sedimentary rocks laid down at the end of the Cretaceous. This work was followed by reports of related occurrences in both marine and nonmarine sedimentary rocks in many different localities around the world. Attention was accordingly focused on questions about the frequency of large-scale impacts and their immediate and longer term signatures. These important questions came to involve efforts by geologists, geochemists, geophysicists, paleontologists, chemists, and physicists and led to a very lively interdisciplinary meeting in Snowbird, Utah, in October 1981. The papers presented at the meeting were recently published in a book† that would make good reading for a wide audience.

There are about 1000 asteroidal bodies with diameters greater than 1 kilometer whose orbits cross that of the earth. About three of these hit the earth every million years. Smaller bodies are more abundant and collide more frequently. The postulated Cretaceous projectile had a diameter of about 10 km. Objects of this size are not very abundant and they may strike the earth about once every 40 million years. A 10-km object having a velocity of 25 km/sec would bring it an energy of about 4×10^{30} ergs.

Evidence of many collisions is found on the moon, Mars, Mercury, and Earth. On the earth the best studied impact feature is the Ries crater in West Germany. It is 26 km in diameter and about 800 meters deep and was formed about 15 million years ago by the impact of an object 1 to 2 km in diameter. Studies of the ejecta provide a picture of tremendous manifestations of energy in the form of high pressures, high temperatures, and high-velocity projectiles.

Aside from the iridium anomalies, the principal evidence for a major event 65 million years ago comes from paleontology. Effects differed widely among the various genera on land and sea. Those most affected were planktonic calcareous shelled organisms living in near-surface regions of the tropical oceans. Benthic creatures and siliceous shelled organisms were less affected. John Lewis and colleagues have suggested that a substantial lowering of the pH of surface waters was involved. They point out that, with the high temperatures associated with a large impact, tremendous quantities of nitrogen oxides would be formed. These would be converted to nitrous and nitric acids and would descend to the earth in the form of acidic precipitation. On land the large buffering capacity of soil would neutralize the acid, but at sea the top layer has little buffering capacity and mixes only slowly with deeper waters.

Not all scholars agree that a major impact occurred at the end of the Cretaceous.‡ We are only at the beginning of discovering and interpreting phenomena connected with impacts of large bodies on the earth. The new book provides a valuable benchmark of the state of knowledge and speculations in this important field.—PHILIP H. ABelson

‡ For example, see C. B. Officer and C. L. Drake, Science 219, 1383 (1983).