LETTERS

EPA Review of Lead Study: H. L. Needleman; P. J. Landrigan and V. N. Houk; C. B. Ernhart 116

EDITORIAL

Progress Toward Energy Security 121

ARTICLES

Elemental Tracers of Distant Regional Pollution Aerosols: K. A. Rahn and D. H. Lowenthal .. 132

Childhood Leukemia and Fallout from the Nevada Nuclear Tests: C. E. Land, F. W. McKay, S. G. Machado 139

NEWS AND COMMENT

Polish Science Struggles On 145

U.S. Exchange with Poland 146

Seeds of Dissension Sprout at FAO 147

NIH Starts Review of Training Programs 149

Briefing: Administration Announces Intent to Leave UNESCO; Richter to Head SLAC; Massachusetts Forbids Use of Impounded Pets in Labs; Regulators Agree on Grain Dust Standards 150

RESEARCH NEWS

First Parvovirus Linked to Human Disease 152

The Fine Points of Cloud Seeding 153

Semisynthetic Enzymes Are New Catalysts 154

A Step Toward Wholly Synthetic Enzymes 155

AAAS NEWS

New Project Explores Disability Research; 1983 Election Results; SWARM to Meet at Texas Tech; Dues Changes Scheduled for 1984; Proposals and Resolutions Invited for 1984 Council Meeting; Volunteers Invited for Museum Project; AAAS Travelers 157
BOOK REVIEWS

The Great Tolbachik Fissure Eruption, reviewed by D. A. Swanson; Structure and Dynamics, T. L. James; Reckoners, T. M. Smith; Inheritance of Susceptibility to Cancer in Man, J. J. Malpighi; Advances in Herpetology and Evolutionary Biology, W. R. Heyer

REPORTS

A Search for Iridium Abundance Anomalies at Two Late Cambrian Biomere Boundaries in Western Utah: C. J. Orth et al.

Seismic Detection of the Summit Magma Complex of Kilauea Volcano, Hawaii: C. H. Thurber

Calcium-Promoted Protein Phosphorylation in Plants: K. Veluthambi and B. W. Poovaiah

Nicotine Is Chemotactic for Neutrophils and Enhances Neutrophil Responsiveness to Chemotactic Peptides: N. Totti III et al.

Heterogeneity of Normal Human Diploid Fibroblasts: Isolation and Characterization of One Phenotype: S. Bordin, R. C. Page, A. S. Narayanan

Mapping of the Human Blym-1 Transforming Gene Activated in Burkitt Lymphomas to Chromosome 1: C. C. Morton et al.

Endogenous Regulation of Macrophage Proliferative Expansion by Colony-Stimulating Factor–Induced Interferon: R. N. Moore et al.

Spectrographic Representation of Globular Protein Breathing Motions: C. A. Pickover

Microbial Transformation of Sulfate in Forest Soils: W. T. Swank, J. W. Fitzgerald, J. T. Ash

Light-Induced Phosphorylation of Retina-Specific Polypeptides of Drosophila in vivo: H. Matsumoto and W. L. Pak

Task- Relevant Late Positive Component of the Auditory Event–Related Potential in Monkeys Resembles F300 in Humans: D. L. Arthur and A. Starr

Opioid Peptides Mediate the Suppressive Effect of Stress on Natural Killer Cell Cytotoxicity: Y. Shavit et al.

COVER

Idealized cycle of Neogene sedimentation on the U.S. Atlantic continental margin; deposition is a direct response to fluctuations in (top left) sea levels, (top right) climates, and (bottom left) continental shelf water masses. The first three stages reflect warming climates through a sea-level transgression associated with deglaciation and increased interaction of the Gulf Stream with the configuration of the continental margin, the accentuated nutrient-rich waters, and phosphate deposition. Stage four (bottom right) reflects cold climates and sea-level low-stands of glacial maximums. Phosphate deposition = P, dark blue dots; carbonate deposition = C, white dots; terrigenous deposition = T, brown dots. See page 123. (Painting by Whiting M. Toler, Washington, North Carolina)
Progress Toward Energy Security

Iran's repeated threats to close the Strait of Hormuz will probably come to naught, but the unexpected often happens in the Middle East with consequent impact on the world's economy. How would the United States fare in the event of partial disruption of petroleum imports? Is there progress toward lessening intermediate-term dependence on uncertain supplies?

The answer to the first question is that the United States is in much better shape to cope with a disruption than it was in 1978, and effects on the price of fuel would not be so great. Since the last crisis, we have made considerable progress toward decreasing imports and building a strategic reserve of oil. As a result of conservation, more efficient energy use, and substitution of other sources, consumption of petroleum has decreased from an average of 18.4 million barrels per day (mbd) to 15.2 mbd. Domestic production of oil increased with the completion of the Alaskan pipeline. Net imports of oil and its products have diminished from 8.0 mbd in 1978 to about 4.3 mbd this year. The strategic reserve now contains nearly 400 million barrels, and it could be tapped at the rate of 1.7 mbd. In addition, a current surplus of producing capacity for natural gas could be tapped to replace some oil products; substitutions equivalent to nearly 1.0 mbd would be feasible—some quickly, others after a delay. In sum, U.S. import of oil would drop to a tiny fraction of their level in 1978. An interruption of supplies would fall much more heavily on other countries than on us. However, they would also fare better than in 1978 since our demand would be much less than it was then.

Progress in achieving greater intermediate-term energy security has not been so impressive. There is a government-sponsored Synthetic Fuels Corporation, but its achievements have not been outstanding. Insofar as there has been progress, it has largely emanated from private industry. The most significant advances have come in the development of better ways of using coal.

At present about 68 percent of U.S. energy is derived from petroleum and natural gas. During the next 10 years domestic production of these will drop. The leading source of alternative energy is coal. Thus, improvements in methods of using coal are particularly welcome. The best news involves the gasification of coal. The Tennessee Eastman plant at Kingsport is on stream. It uses synthesis gas (CO + H₂) derived from coal to produce methanol or acetic anhydride; in principle the synthesis gas could be used to create other petrochemicals. The gasification process used at Kingsport was developed by Texaco and will probably be employed on a large scale one day to produce feedstock for all manner of hydrocarbons. Three other gasification plants will probably be on-line in 1984, including one at Cool Water, California, that uses the Texaco process. The Great Plains plant in South Dakota has Lurgi-type reactors. An Allis-Chalmers low-Btu demonstration plant is located at Wood River, Illinois.

Altogether these coal gasification plants would produce only the equivalent in energy of 30,000 barrels of oil a day. However, they will provide industry with valuable learning experiences. Were an urgent need to arise for large-scale expansion of gasification, the lessons learned from the new plants would cut several years from the time otherwise required to design, build, and bring into production new facilities.

For many years shale oil has been touted as an answer to America's needs for liquid fuels. The day of fulfillment is distant, but Union Oil is completing a 10,000-barrel-a-day module that might serve as a prototype for large-scale expansion. Union Oil has a government guarantee of a price of $42 a barrel and may or may not make a profit at that price.

The ability of the United States to cope with an interruption of petroleum has been much improved. Some progress has been made in developing fossil fuel sources for intermediate-term needs, but ultimately the pace must be accelerated.

—Philip H. Abelson