LETTERS
Preventing Nuclear War: T. F. Malone; Science and Mathematics Education: A. Ralston; Spin Correlation: N. D. Mermin; F. Rohrlich; Digit Counting: W. I. Nissen, Jr. .. 340

ARTICLES
The Earth as a Planet: Paradigms and Paradoxes: D. L. Anderson 347
Localization, Interactions, and the Metal-Insulator Transition: R. C. Dynes and P. A. Lee ... 355
Nurturing the Scientific Enterprise: J. B. Wyngaarden .. 361

EDITORIAL
Engineering and the National Science Foundation: F. Karl Willenbrock 345

NEWS AND COMMENT
Missile Deployments Roil Europe .. 371
Briefing: China, U.S. Positions Closer on Nuclear Deal; Europe Eyes U.S. Model on Joint Research Rules; Battelle Predicts Rise in R & D Spending in 1984; Guidelines for Artificial Heart Implants Revised 376
School Technology Contract Stirs Dispute .. 378
EPA Ends Cut and Paste Toxicology ... 379

RESEARCH NEWS
Lowered Cholesterol Decreases Heart Disease ... 381
Another Oil Resource Warning ... 382
A Thermal Filter to Extinction ... 383
Receptor Reconstituted. .. 385
BOOK REVIEWS

Technological Trends and Challenges in Electronics, reviewed by N. H. Leff; Black Holes, White Dwarfs, and Neutron Stars, R. D. Blandford; Flora of Tierra del Fuego, J. Kummerow; Conditioning and Associative Learning, R. A. Rescorla; Development of Auditory and Vestibular Systems, K. D. Peusner; Books Received .. 386

REPORTS

Phosphorus Cycling in a Northern Hardwood Forest: Biological and Chemical Control: T. Wood, F. H. Bormann, G. K. Voigt ... 391

Thickness of Saturn’s Rings Inferred from Voyager 1 Observations of Microwave Scatter: H. A. Zebker and G. L. Tyler .. 396

Nuclear Magnetic Resonance Imaging of the Vitreous Body: R. G. Gonzalez et al. ... 399

Plasmodium falciparum Maturation Abolishes Physiologic Red Cell Deformability: H. A. Cranston et al. ... 400

Salt Taste Transduction Occurs Through an Amiloride-Sensitive Sodium Transport Pathway: G. L. Heck, S. Mierison, J. A. DeSimone 403

Algal Chemical Defense Against Herbivores: Allocation of Phenolic Compounds in the Kelp Alaria marginata: P. D. Steinberg 405

Expression of Gliial Fibrillar Acidic Protein in Immature Oligodendroglia: B. H. Choi and R. C. Kim ... 407

Prenatal Exposure to Carbon Monoxide: Learning and Memory Deficits: C. F. Macratus and L. D. Fechter .. 409

Rapid Mechanical Responses of the Dark-Adapted Squid Retina to Light Pulses: I. Tasaki and T. Nakaye .. 411

Crystals of the Octameric Histone Core of the Nucleosome: R. W. Burlingame, W. E. Love, E. N. Moudrianakis .. 413

PRODUCTS AND MATERIALS

Chromatography Data System; pH/Ion Meters; Spectrophotometer; Laboratory Computer; Laboratory Microscope; DNA Sequencing Cell; Literature 416

COVER

The deployment of Pershing II and cruise missiles in Europe has created some painful and potentially lasting military and political problems for the United States and its Western allies (see page 371). This photo shows a platoon of three Pershing II missiles erected for a test at Fort Sill, Oklahoma, in mid-1983. The missiles declared operational on 31 December 1983, in Mutlangen, West Germany, are identical except that they lack the red and yellow stripes. [Martin Marietta Aerospace]
AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE

Science serves its readers as a forum for the presentation and discussion of important issues related to the advancement of science, including the presentation of minority or conflicting points of view, rather than by publishing only material on which a consensus has been reached. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by the AAAS or the institutions with which the authors are affiliated.

Editorial Board
1983: FREDERICK R. BLATTNER, BERNARD F. BURKE, CHARLES L. DRAKE, ARTHUR F. FINDEIS, E. PETER GRÜNBERGER, GHYN INGERSOLL, MILTON RUSSELL, WILLIAM P. SLICHTER, JOHN WOOD
1984: ARNOLD DEMAIN, NEAL E. MILLER, FREDERICK MOSTER, ALLEN NEWELL, RUTH PATRICK, BRYANT W. ROSSITER, VERA C. RUBIN, SOLOMON H. SNYDER, PAUL E. WAGGONER

Publisher: WILLIAM D. CAREY
Associate Publisher: ROBERT V. ORMES
Editor: PHILIP H. ABELSON

Editorial Staff
Assistant Managing Editor: JOHN E. RINGLE
Production Editor: ELLEN E. MURPHY
Business Manager: HANS NUSBAUM
News Editor: BARBARA J. CULLITON
News Commentary: COLIN NORMAN (deputy editor), JEFFREY L. FOX, CONSTANCE HOLDEN, ELIOT MARSHALL, R. JEFFREY SMITH, MARJORIE SUN, JOHN WALSH
European Correspondent: DAVID DICKSON
Contributing Writer: LUTHER J. CARTER
Research News: ROGER LEWIN (deputy editor), RICHARD A. KERR, K. W. KOLATA, JEAN L. MARX, THOMAS H. MAUGH II, ARTHUR L. ROBINSON, M. MITCHELL WALDROP
Administrative Assistant: News: SCHERRAINE MACK; Editorial Assistant: News: FANNIE GROOM
Senior Editors: ELAINE BUTZ, RUTH KULSTAD
Associate Editors: MARTHA COLLINS, SYLVIA EBERHART, CATHY RUSSELL, LOIS SCHMITT
Assistant Editor: STEPHEN KEPPEL
Book Reviews: KATHERINE LIVINGSTON, Editor; LINDA RUBIN, JANET REEG
Letters: CHRISTINE GILBERT
Copy Editor: ISABELLA BOULDAIN
Production: JOHN BAKER; HOLLY BISHOP, ELEANOR WARNER; JEAN ROCKWOOD, SHARON RYAN, BEVERLY SHIELDS

Cover, Reprints, and Permissions: GRAUCE FINGER, Editor; GERALDINE CRUMP, CARRON HARRIS
Guide to Scientific Instruments: RICHARD G. SOMMER
Editorial Administrator: SUSAN ELIOTT
Assistant to the Associate Publisher: ROSE LOWERY
Assistant to the Managing Editor: NANCY HARTMAGEL
Member Recruitment: GWENDOLYN HULL
Member and Subscription Records: ANN RAGLAND

Advertising Representatives
Director: EARL J. SCHERAGRO
Production Manager: GINA REILLY
Advertising Sales Manager: RICHARD L. CHARLES
Marketing Manager: HERBERT L. BURKE
Sales: NEW YORK, N.Y. 10036: Steve Hamburger, 1515 Broadway (212-730-1050); SCOTCH PLAINS, N.J. 07076: C. Richard Callis, 12 Unami Lane (201-898-4873); CHICAGO, ILL. 60611: Jack Ryan, Room 2107, 919 N. Michigan Avenue (312-337-4973); BEVERLY HILLS, CALIF. 90211: J. Callis, 111 N. La Cienega Blvd. (213-637-2772); SAN JOSÉ, CALIF. 95112: Bob Brindley, 310 S. 16 St. (408-986-4690); DORSET, Vt. 05251: Fred W. Dieffenbach, Kent Hill Rd. (802-867-5591).
ADVERTISING CORRESPONDENCE: Tenth floor, 1515 Broadway, New York 10036 (212-730-1050).

Engineering and the National Science Foundation

In the scientific and technical communities of both the federal and private sectors, it is widely recognized that an effort to strengthen engineering at the National Science Foundation is desirable and timely. The engineering professional societies and engineering schools have been dissatisfied with NSF programs for many years. The engineering academic community has not found NSF to be an effective source of assistance as undergraduate enrollments have expanded while out-of-date laboratory facilities and inadequate research funding have decreased the ability of the schools to attract an adequate number of faculty members or full-time graduate students.

The organizational position of engineering within the NSF administration has been improving. Engineering has emerged from a division status, to part of a Directorate of Engineering and Applied Science, to its present position as a separate directorate. Presumably engineering is no longer considered as one of the sciences or simply the application of science but rather an enterprise with distinctive characteristics of its own.

One of these characteristics is the concentration of activities in industry. More than three-quarters of the engineers in the United States are employed in industry; industrial laboratories have done the outstanding research in many fields. Since much engineering research is best carried out by teams of specialists and is frequently heavily dependent on equipment, an industrial site may often be better adapted for effective engineering research than the usual academic environment.

Although in-depth skills in scientific and mathematical analysis are needed by both scientists and engineers, an engineer must also be able to synthesize knowledge into products and systems. Their designs must satisfy scientific as well as nonscientific criteria such as manufacturability, maintainability, risk-minimization, and cost-effectiveness.

There are also distinctions in the academic world. Most engineers complete their formal education in 4-year undergraduate programs; such programs cannot be directed simply to preparation for graduate work. Postdoctoral fellowships, which are so important in the training of research scientists, are almost nonexistent among engineers.

Such differences between engineering and the sciences might lead one to the conclusion that engineering should be the responsibility of a federal agency other than NSF. Some countries have developed separate university systems for engineering and scientific education, but in the United States nearly all research universities have strong scientific and mathematical programs as well as schools of engineering. Thus the U.S. academic structure provides a rationale for expanding NSF activities in engineering rather than assigning the general support of engineering research and education to other agencies.

However, of even greater importance is the fact that the scientific and engineering enterprises operate most effectively when their borders are kept indistinct. Increases of scientific knowledge and understanding have given great impetus to engineering and technological advances. In turn, engineering and technological advances have frequently led to expansion of scientific knowledge. The interplay of science and technology, which is crucial to the rapid advance of both science and engineering, should not be hampered by institutional barriers.

If engineering in NSF is strengthened, three objectives can be simultaneously served. First, badly needed assistance to the academic engineering community can be more efficiently provided; second, the synergism between science and engineering can be reinforced; and third, the nation's technological capability can be strengthened. A dynamic engineering program at NSF is one of the most highly leveraged investments in the nation's technological future that the federal government can make.—F. Karl WILLENBROCK, Cecil H. Green Professor of Engineering, Southern Methodist University, Dallas, Texas 75275