Residential Firewood Use

In their report on the use of residential firewood in the United States, Lipfert and Dungan (1) used the New England Fuelwood Study (2) results in developing an equation to estimate national firewood consumption by air pollution control regions. Although the degree of fuelwood-induced air pollution is partially a function of the concentration of fuelwood use in any given region, I strongly disagree, both theoretically and statistically, with their estimation method. I will limit my discussion to the following two points: (i) the issue of causality is ignored and (ii) the extrapolation of New England household woodburning habits to the rest of the country is questionable.

The Lipfert-Dungan estimation equation states that the amount of residential fuelwood burned per degree day is dependent on population density. They also imply in their reference 5 (J) that this variable, since it is important in air quality analysis, is also important in explaining the number of cords of wood a household might consume. While population density may be an appropriate index for air quality analysis, Lipfert and Dungan fail to substantiate their claim that it is important in predicting household fuelwood consumption. By not discussing the causal relations between cords of wood consumed, climatic conditions (degree days), and population density, their extrapolation of New England data to the country as a whole is not defendable.

The New England Fuelwood Survey found a number of socioeconomic variables that were significant in explaining residential fuelwood consumption patterns. These included cost of conventional energy in comparison with wood energy, woodburning apparatus used, percentage of owner-occupied households, and household location in relation to firewood supplies and wood-using industries. These variables were not included by Lipfert and Dungan. Their unsuccessful attempt to explain the divergence of a number of state consumption patterns from their best-fit line as well as a recently completed nationwide residential fuelwood consumption survey (3), which estimated that average consumption of fuelwood per household is greater in the southwest region than in the north central region, provide ample evidence that there are serious weaknesses in Lipfert and Dungan’s model specifications. The equation is not only inadequate but also inappropriate for estimating national fuelwood consumption rates by region.

Mark R. Bailey
The Skog and Waterson (1) survey data on the distribution of residential fuelwood use support not only our estimate of total national consumption but the relation we described for the distribution of usage across the country in terms of heating degree days and population density as well. With respect to the issue of causality, we stated that the purpose of our inquiry was to derive an empirical relation for the spatial density of fuelwood use because of concern about air quality impacts. For this reason, population density (at the county level) was a useful explanatory variable. We also had to restrict our analysis to those variables for which data were readily available for the whole country.

We did not examine why wood fuel was used. Economic factors play a large role in these causal relationships (2) as do aesthetic and life-style factors. Bailey is correct in that we did not consider these factors, and some may indeed be sources of variability in usage patterns. However, several factors that Bailey cited are collinear with population density—percentage of owner-occupied households and household location in relation to firewood supplies—and would not greatly change the predictive power of a regression. We used population density because of the purpose to which the regression equation would be put and the availability of data nationwide from counties.

Finally the Skog and Waterson data (1) support the validity of our extrapolation of the New England data to the rest of the country in the following ways.

1) Our estimate of total national usage for the 1978–1979 heating season was 34.7×10^6 cords. Their estimate for the 1980–1981 heating season was 42×10^6 cords, for both primary and secondary homes. This must be considered excellent agreement, since the Department of Energy estimates indicate at least a 20 percent increase for the 2 years (3).

2) With regard to distribution, a comparison of our state estimates of total usage with those of Skog and Waterson (1) for the 37 states for which estimates were reported gave a correlation coefficient of 0.79. This is about the same as we had reported in our original analyses ($R = 0.81$ for 18 states).

3) Bailey's statement that Skog and Waterson (1) "estimated that average consumption of fuelwood per household is greater in the southwest region than in the north central region," providing "ample evidence that there are serious weaknesses" in our model is in error. Their report states that the total consumption in the South (12 states from Florida and the Carolinas to Texas and Oklahoma) is about the same as that for 13 north central states (from the Dakotas to the Great Lakes), as are the numbers of households in the two regions, and explains this finding as a trade-off between less urbanization and higher heating degree days (4), precisely the two factors used in our model. When the individual state estimates for these two regions are compared with our model predictions, we find that consumption was overestimated in 2 of the 13 north central states and underestimated in 4 of the 12 states in the South. However, it is possible that the Skog and Waterson survey may be biased toward a disproportionate representation of rural households (4).

FREDERICK W. LIPFERT
JENNIFER L. DUNGAN*
Brookhaven National Laboratory,
Upton, New York 11973

Notes and References

2. F. W. Lipfert and J. Lee, Air Pollution Implications of Increasing Residential Firewood Use, BNL33906 (Brookhaven National Laboratory, Upton, N.Y., October 1982).

3. The 95 percent confidence limit on our national estimate was 31.1×10^6 to 38.2×10^6 cords. Skog and Waterson (1) report a standard error of "up to 10 percent" which would give approximate confidence limits from 34×10^6 to 50×10^6 cords; the difference between the estimates is not statistically significant. Furthermore, a Department of Energy survey (DOE/EIA Report 0341, Department of Energy, Washington, D.C., 1982) indicates a 22 percent increase in residential wood energy consumption, from 1978 to 1981. This factor would increase our 1978–1979 estimates to 42.3×10^6 cords.

4. Equal numbers of urban and rural dwellers were polled, but "urban" was defined as applying to a village or city with more than 2500 people.

* Present address: Marine Biological Laboratory, Woods Hole, Mass. 02543.

9 November 1983
Residential firewood use
MR Bailey

Science 223 (4637), 716-717.
DOI: 10.1126/science.6695180

ARTICLE TOOLS http://science.sciencemag.org/content/223/4637/716

REFERENCES This article cites 1 articles, 1 of which you can access for free http://science.sciencemag.org/content/223/4637/716#BIBL

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Use of this article is subject to the Terms of Service