LETTERS

EDITORIAL
Amending the National Science Foundation Act: F. Press

ARTICLES
New Laser Source Technology: C. P. Christensen
Fiber-Optic Sensors for Biomedical Applications: J. I. Peterson and G. G. Vurek
Scientists and Congress: H. B. Gonzalez

NEWS AND COMMENT
Iraq’s Chemical Warfare: Case Proved
Pentagon Names Star Wars Czar
Lawyers Flush Out Toxic Shock Data
Universities Gag on Research Controls
Will Deficits Put a Damper on R & D?
Boo Time for British Biotechnology?
Pressure for Patent Reform

Briefing: Meselson Meets a Shower of Yellow Rain from Bees; Pediatrician May Head ADAMHA; In the Doghouse at OSHA

RESEARCH NEWS
Computing in the Language of Science
Ice Cap of 30 Million Years Ago Detected
PET Scan Controversy Aired .. 143
A New Route to Chiral Compounds .. 145

BOOK REVIEWS
Supernova Remnants and Their X-Ray Emission, reviewed by S. P. Reynolds; Fundamental Processes in Energetic Atomic Collisions, C.-D. Lin; Coated Grains, J. D. Milliman; The Order of Man, B. T. Shea; Books Received 146

REPORTS
Helium-3 Emission Related to Volcanic Activity: Y. Sano et al. 150
Early Eocene Vertebrates from Baja California: Evidence for Intracontinental Age Correlations: J. J. Flynn and M. J. Novacek 151
Topography from Single Radar Images: R. L. Wildey 153
Single-Copy Inverted Repeats Associated with Regional Genetic Duplications in γ Fibrinogen and Immunoglobulin Genes: A. J. Fornace, Jr., et al. 161
Phospholipase-Induced Crystallization of Channels in Mitochondrial Outer Membranes: C. A. Mannella ... 165
Immunohistochemistry of Adenosine Deaminase: Implications for Adenosine Neurotransmission: J. I. Nagy et al. 166
Sequence of the Human Somatostatin I Gene: L.-P. Shen and W. J. Rutter 168
High Incidence of "Leapfrog" Pattern of Geographic Variation in Andean Birds: Implications for the Speciation Process: J. V. Remsen, Jr. 171

COVER
Individuals from three populations of Hemispingus superciliosus, a small tan- gler of the Andes that illustrates the "leapfrog" pattern of geographic varia-
tion. Yellow populations of the northern and southern Andes are geographi-
cally separated by very differently colored gray populations in central Peru. This type of pattern is found in about 20 percent of all Andean birds with three or more subspecies. See page 171. [Painting by John P. O’Neill, Museum of Natural Science, Louisiana State University, Baton Rouge 70803]
Amending the National Science Foundation Act

The intent of a proposal before Congress to amend the National Science Foundation Statutory Act of 1950 is to provide for a stronger emphasis on engineering in NSF programs, principally by inserting the words "engineering" or "engineers" in almost every place that "science" or "scientist" appears in the text. I fully share the concerns that prompted the suggested changes, and I have spoken to the importance of efforts to ensure our continuing technological strength, both nationally and internationally. Among the many problems we face are faculty shortages; inadequate, often outdated instruments and equipment; insufficient funding for engineering research; inefficient transfer of new scientific and engineering knowledge into public and commercial sectors; and inefficient transfer from industry to the universities of industrial knowledge and needs.

We do have to act. That agreed, there are, in terms of the proposed amendment, several questions before us. What can effectively be done within the existing statutory framework? Are new arrangements needed, and what are their likely effects? What processes should be followed for forming new arrangements and for implementing them?

First, what can be effectively done within existing arrangements? The Administration's proposed fiscal year 1985 budget answers the question. For example, there is a substantial increase for engineering research in the NSF budget—the largest proportionate increase for any of the directorates. In addition, support for engineering is embedded in the budgets of the mission agencies, with individual agencies providing much more support than the $147 million proposed in fiscal 1985 for engineering research within NSF. In 1984, an estimated $786 million was provided by the federal government for basic research in engineering, most of that coming from agencies other than NSF.

Let us assume that the new arrangements of the sort suggested in the proposed revisions are adopted. What are the likely outcomes? A major change may be to dilute the fundamental mission for which NSF was created—to support basic research in all the sciences. One needs to remember that, in contrast to engineering, many of the sciences are not related to any agency's mission except NSF. Is there any assurance that, as engineering research grows within NSF, there will be commensurate growth in its overall budget? If not, what impact will competition for funds have on the sciences that depend heavily on NSF support, such as mathematics and chemistry?

Although partitioning NSF between science and engineering is not the intent of the House Committee on Science and Technology, the wording used in the amendment can be given this unfortunate interpretation. Given the very few changes made to date in the 1950 act, can that act not, in its present form, provide for a larger role for engineering within NSF?

The science and engineering communities—aademic, industrial, and governmental—should work together in a constructive way to address the problems of engineering. But one must ask whether legislative remedies will be truly effective in promoting this dialogue or may instead lead to corrosive frictions? Amendment of the NSF organic act is a serious undertaking whose consequences are uncertain. Will there be other requests to amend the act? Will we have a "discipline of the month" series of amendments, leading to the ultimate decay of one of the most successful institutions established by the federal government?

It is not clear that the changes are necessary. They may even be counterproductive. What is critical is to continue the dialogue on engineering that has been under way for several years. That dialogue has already produced substantial results. And, if conducted in a collegial manner with all parties involved, then we may fashion more effective remedies that will benefit not only engineering but also science and the federal role in research and development.—Frank Press, President, National Academy of Sciences, Washington, D.C. 20037