LETTERS

EDITORIAL

Engineering and the National Science Foundation: L. M. Branscomb 343

ARTICLES

Interstellar Matter and Chemical Evolution: M. Peimbert, A. Serrano, S. Torres-Peimbert .. 345
Evolution of Proteolytic Enzymes: H. Neurath .. 350
Biotechnology as an Intellectual Property: R. G. Adler .. 357

NEWS AND COMMENT

Changes in Animal Care Policy Proposed .. 364
Congress, DOE Battle Over British Plutonium .. 365
Privacy Suit Puts Cancer Agency on Trial .. 367
The Price for More Generic Drugs .. 369
Briefing: Texas Repeals Antievolution Rules; India and Italy to Share Biotechnology Center; Rifkin Takes Another Shot at UC Experiment; Last Rights; Russia Gives Up Two Scientists .. 370

RESEARCH NEWS

Natural Language Understanding .. 372
Say What? .. 373
Microbial Adhesion Is a Sticky Problem .. 375
A New Way to Assign 31P Chemical Shifts .. 377

BOOK REVIEWS

The Royal Society of Edinburgh (1783–1983), reviewed by E. C. Patterson; The Mountains of Northeastern Tasmania, J. N. Jennings; Breeding Biology of the Adélie Penguin, A. J. Gaston; CO$_2$ and Plants, C. H. Foyer; Books Received 378
Visualization of Turbulent Flame Fronts with Planar Laser-Induced Fluorescence: G. Kychakoff et al. .. 382
Turbidity Currents: Monitoring Their Occurrence and Movement with a Three-Dimensional Sensor Network: F. H. Weirich .. 384
Congruent Paleomagnetic and Archeomagnetic Records from the Western United States: A.D. 750 to 1450: K. L. Verosub and P. J. Mehringer, Jr. 387
Initiation of Angiogenesis by Human Follicular Fluid: J. L. Frederick, T. Shimamukı, G. S. diZerega .. 389
Rectal Insemination Modifies Immune Responses in Rabbits: J. M. Richards, J. M. Bedford, S. S. Witkin .. 390
Plasmodium knowlesi Sporozoite Antigen: Expression by Infectious Recombinant Vaccinia Virus: G. L. Smith et al. .. 397
Repression of Rearranged μ Gene and Translocated c-myc in Mouse 3T3 Cells × Burkitt Lymphoma Cell Hybrids: K. Nishikura et al. 399
Molecular Model for Messenger RNA Splicing: M. MacCumber and R. L. Ornstein .. 402
Inhibition of Dihydropteridine Reductase by Novel 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Analogs: C. W. Abell et al. .. 405
Cultured Cells of White Pine Show Genetic Resistance to Axenic Blister Rust Hyphae: A. M. Diner, R. L. Mott, H. V. Amerson 407
Analysis of Hydrothermal Vent-Associated Symbionts by Ribosomal RNA Sequences: D. A. Stahl et al. .. 409
Chromosome Organization and Heterochromatin Elimination in Parascaris: C. Goday and S. Pimpinelli ... 411
Phenotypic Variation Within Histocompatibility-Defined Clones of Marine Sponges: J. E. Neigel and G. P. Schmahl .. 413
Ingestive Behavior Evoked by Hypothalamic Stimulation and Schedule-Induced Polydipsia Are Related: G. Mítuloman and E. S. Valenstein 415
View Through a Window May Influence Recovery from Surgery: R. S. Ulrichs .. 420

Digital picture of the chemical species distribution in a turbulent hydrogen-air jet flame is formed by imaging of laser-induced fluorescence. A planar cross section of the species OH is shown, with the jet center line at the top of the 3 by 3 centimeter visualized region. Such information is important for the understanding of questions concerning turbulent flame structure. See page 382. [George Kychakoff et al., Department of Mechanical Engineering, Stanford University, Stanford, California 94305]
AMERICAN ASSOCIATION FOR
THE ADVANCEMENT OF SCIENCE

Science serves its readers as a forum for the presentation and discussion of important issues related to the advancement of science, including the presentation of minority editorial selecting points of view, rather than by publishing only material of which a consensus has been reached. Accordingly, all articles published in Science, including articles on editorial, news and comments, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated.

Editorial Board
FREDERICK R. BLATTNER, BERNARD F. BURKE, ARNOLD DITTMER, Celia C. DRAKE, ARTHUR F. FINKEL, E. PETER GEIDUSCHEK, GLYNN ISAAC, NEAL E. MILLER, FREDERICK MOSTELLER, ALLEN NEWELL, RUTH NASBUSH, and WILLIAM NOLD.

WAGGNER, E. DOROTHY, WAGNEN, E. WILLIAM, WALDROP H. FINDEIS, ERAH, CAGO, C. Physio, SATIONS.

For the reallocation of the proposed amendments. His main concerns are that (i) NSF's fundamental mission will be diluted and (ii) the engineering budget will grow at the expense of science. On the first point, the fundamentals of engineering are being defined and their educational linkages strengthened. On the second, there is a way for science to lose but also a way for both science and engineering to gain.

If we insist that engineering is only another discipline of science, like physics or anthropology, all the pressures to modernize American engineering in the interests of national security and economic competitiveness will be played out in a fixed-pie scenario—one discipline against another. Or, if this process frustrates those concerned with upgrading our national engineering capability to the point that they abandon NSF as a significant participant in the effort, it will lead to a National Technology Foundation or some other new federal structure to do the job. Much of the political support enjoyed by fundamental science today might well be bled off into the support for the budget of such an agency, which would focus the majority of its work on near-term benefits. Growth in the budget for science could be a major casualty. So too would be much of the fruitful interchange between science and engineering, which is best promoted with a single agency incorporating both.

Engineers should help NSF refine the research and education strategy that best fulfills the NSF mission in engineering and should support the study of engineering research priorities now under way at the NAE. Industry needs to understand how well its interests are served by a supportive but nonintrusive NSF program and help NSF get the additional resources it deserves. Scientists should welcome the development of new NSF initiatives that build an even stronger case for the economic importance of basic science through an effective engineering capability that can deliver added benefits to the American people.—LEWIS M. BRANSCOMBE, Chairman, National Science Board, Washington, D.C. 20550.

Engineering and the National Science Foundation

For some years the National Science Board has been working with the directors of the National Science Foundation—in particular, Richard Atkinson, John Slaughter, and Edward Knapp—to modernize the NSF mission in support of academic engineering. With strong encouragement from the National Academy of Engineering and professional societies, and with the support of the Office of Science and Technology Policy, gratifying progress has been made. The Engineering Directorate has been established, a new mission for NSF in engineering established by NSF, and new program directions established by the NSF director.

All this has been accomplished within the framework of the NSF Act, which, as Frank Press points out in his editorial (13 April, p. 115), does not require amendment to permit this. Nevertheless, the consensus of the NSF is that the amendments proposed by the House Committee on Science and Technology are reasonable and constructive. Engineering would no longer be defined as a scientific discipline. At the same time NSF’s role would be support for programs “ . . . fundamental to the engineering process and programs to strengthen engineering research potential and engineering education. . . .”

This proposed new phrasing should help put to rest two concerns that have bothered both scientists and engineers. Engineering is seen as more than science. We should not say to engineers, “You can receive support only if your work competes as science.” Such pressures in the past have hurt U.S. engineering, have hurt the economy, and have not helped science. The phrasing also emphasizes the academic and research orientation of NSF support and makes clear that NSF will not do the engineering work of other agencies or engage in commercially oriented problem-solving.

For these reasons, I do not share Press’ concern about the “likely outcomes” of adoption of the proposed amendments. His main concerns are that (i) NSF’s fundamental mission will be diluted and (ii) the engineering budget will grow at the expense of science. On the first point, the fundamentals of engineering are being defined and their educational linkages strengthened. On the second, there is a way for science to lose but also a way for both science and engineering to gain.

If we insist that engineering is only another discipline of science, like physics or anthropology, all the pressures to modernize American engineering in the interests of national security and economic competitiveness will be played out in a fixed-pie scenario—one discipline against another. Or, if this process frustrates those concerned with upgrading our national engineering capability to the point that they abandon NSF as a significant participant in the effort, it will lead to a National Technology Foundation or some other new federal structure to do the job. Much of the political support enjoyed by fundamental science today might well be bled off into the support for the budget of such an agency, which would focus the majority of its work on near-term benefits. Growth in the budget for science could be a major casualty. So too would be much of the fruitful interchange between science and engineering, which is best promoted with a single agency incorporating both.

Engineers should help NSF refine the research and education strategy that best fulfills the NSF mission in engineering and should support the study of engineering research priorities now under way at the NAE. Industry needs to understand how well its interests are served by a supportive but nonintrusive NSF program and help NSF get the additional resources it deserves. Scientists should welcome the development of new NSF initiatives that build an even stronger case for the economic importance of basic science through an effective engineering capability that can deliver added benefits to the American people.—LEWIS M. BRANSCOMBE, Chairman, National Science Board, Washington, D.C. 20550.