LETTERS
Groundwater Contamination: J. D. Bredehoeft and T. M. Usselman; NAS and the Soviet Academy: E. R. Piore; Sex Differences Among the Mathematically Precocious: L. H. Fox; Biological Diversity: P. F. Brussard; D. Jablonski et al. 1292

EDITORIAL
Chemistry Without Test Tubes 1297

ARTICLES
Computer Vision and Natural Constraints: C. M. Brown 1299
Strategic Command, Control, Communications, and Intelligence: C. A. Zraket 1306
The Interleukin-2 T-Cell System: A New Cell Growth Model: D. A. Cantrell and K. A. Smith 1312

NEWS AND COMMENT
A Political Push for Scientific Cooperation 1317
IBM’s Bloch Named to Lead NSF 1318
Lab Break-In Stirs Animal Welfare Debate 1319
A “Prolife” Population Delegation? 1321
Congress Turns Cold on Fusion 1322
Briefing: Academy Cancels Visit to Soviet Union; Environment 1984 Gets Mixed Marks by Report; Melmon Resigns Stanford Chairmanship 1324

RESEARCH NEWS
New Neurons Form in Adulthood 1325
Why Is Development So Illogical? 1327
Unusual Bimetallic Catalyst Synthesized 1329
BOOK REVIEWS

The Development of Political Organization in Native North America, reviewed by J. G. Jorgensen; Limitations to Efficient Water Use in Crop Production, R. P. Patterson; Rock and Mineral Magnetism, D. J. Dunlop; Books Received ... 1331

REPORTS

Community Recovery After Storm Damage: A Case of Facilitation in Primary Succession: L. G. Harris et al. .. 1336
Bishop Tuff Revisited: New Rare Earth Element Data Consistent with Crystal Fractionation: K. L. Cameron .. 1338
The Association of Iron and Manganese with Bacteria on Marine Macroparticulate Material: J. P. Cowen and M. W. Silver 1340
Adenovirus Ela Gene Product Expressed at High Levels in Escherichia coli Is Functional: B. Ferguson et al. .. 1343
Autoantibodies to a 64-Kilodalton Islet Cell Protein Precede the Onset of Spontaneous Diabetes in the BB Rat: S. Baekkeskov, T. Dyrberg, Å. Lernmark ... 1348
Wolves, Moose, and the Allometry of Population Cycles: R. O. Peterson, R. E. Page, K. M. Dodge ... 1350
Competition Controls the Growth of an Identified Axonal Arborization: R. K. Murphey and C. A. Lemere ... 1352
Is There an Evoked Vascular Response?: C. A. Sandman, J. P. O’Halloran, R. Isenhart ... 1355
Predator-Induced Defense in a Marine Bryozoan: C. D. Harvell 1357
Decreased Neuronal Inhibition in Vitro After Long-Term Administration of Ethanol: D. Durand and P. L. Carter ... 1359

COVER

(Left) Optic flow images (retinal pattern velocities caused by scene motion) from a rotating sphere and cylinder. (Right) Shapes causing the images, as derived by a computational vision process. Such processes use mathematical models of physical laws and assumptions about nature to recover physical information about scenes from input images. See page 1299. [John Aloimonos, Computer Science Department, University of Rochester, Rochester, New York 15627]
Chemistry Without Test Tubes

To those whose experience in chemical research laboratories was 20 years ago or more the modern counterpart is a strange place. New instrumentation with electronic components has revolutionized analytical capabilities. It has also made accessible crucial experiments and theoretical calculations that could not previously be performed. Some present-day measurements can be made with speeds and sensitivities that are five to ten orders of magnitude better than those of two decades ago.

In a symposium at the recent AAS meeting in New York and in an earlier report,* leading chemists were enthusiastic about new opportunities for research that have been created. They emphasized three major frontiers. The first is the opportunity to understand, in the most fundamental sense, chemical reactivity and how to control it. The second is to improve understanding of catalysts. The third is to extend to the molecular level understanding of life processes. A few examples are appropriate.

The study of why and how chemical changes take place has been especially facilitated by new instrumentation. Lasers, computers, molecular beams, ion cyclotron resonance, and many other tools have been developed and facilitated new research approaches. Of these, lasers have been particularly helpful. Their short pulse durations permit probing of chemical reactions in times ranging from 10^-6 to 10^-12 seconds. Lasers also provide tunable, extremely narrow, frequency light sources and thus greater diagnostic sensitivity and selectivity. With high-power sharply tunable lasers it is possible to excite one particular degree of freedom of many molecules in a sample. During the interval in which these excited states persist, such molecules react as if that particular degree of freedom is at a high temperature while all the rest of the degrees of freedom of the molecule are at zero. Today we know much about the chemistry of molecules at the ground state. The study of their behavior under excitation will greatly improve our understanding and ability to devise important applications.

Catalysts are already important technologically. It is estimated that 20 percent of the gross national product is generated through their use. Much of the present art was developed through empirical research. New equipment facilitating fundamental studies of processes on a molecular level is now available. One result is the rapid development of surface science. Because of the unsatisfied bonding capability of atoms at surfaces, the chemistry there is different from that of reactants brought together in solution or as gases. When chemists are able to identify molecular structures on the surfaces they will be able to understand and control events there.

Other frontiers of research include homogeneous catalysts, metal cluster chemistry, and stereoselective catalysts. An important branch of homogeneous catalysis has developed from research in organometallic chemistry. An example is rhodium dicarbonyl diiodide employed in the commercial production of acetic acid from methanol and carbon monoxide. Stereoselective catalysts now being discovered will surely have important applications in the synthesis of biological molecules. If a complex molecule has many chiral carbon atoms and a synthetic process produces all of them, only a tiny fraction of the product is likely to have the desired biological activity.

The chemists state, and rightly so, that their science has been underfunded relative to other major disciplines. They point to many new research opportunities and to the needs of the $175-billion chemical industry for new knowledge and trained people. They remind us that although chemicals now produce a favorable balance of payments of $12 billion a year, leadership in some areas of research has moved to other countries. Their plea for funds to enable them to purchase state of the art instrumentation should be granted, and their efforts to support training of the next generation of chemists supported.—PHILIP H. ABELSON