This Week in Science .. 511

LETTERS
Scientists’ Time: L. J. Lanzorotti; Patent Rights: D. Frenzen; E. Q. Daddario 512

EDITORIAL
Science and the Philadelphia Story 517

ARTICLES
The Structure of Arthropod Hemocyanins: D. Linzen et al. 519
Reforms and Open Policy in China: Song Jian 525
Active T-Cell Receptor Genes Have Intron Deoxyribonuclease Hypersensitive Sites: E. Bier, Y. Hashimoto, M. I. Greene, A. M. Maxam 528

NEWS AND COMMENT
Arms Agreement Breathes New Life into SCC 535
Germany Axes Neutron Source .. 536
Mill Tailings: A $4-Billion Problem ... 537
Briefing: Test Wrecks Reactor, Delights Researchers; Illinois, Cornell Sign Supercomputer Contracts; IOM Sees Need for Autopsy Policy; IOM Reports on Vaccine Supply Problems; United States Drops Action on Ariane Prices 538
Lobbying Urged for Facilities Fund .. 540

RESEARCH NEWS
Heading for a Dusty Death at Comet Halley? 541
Is the War on Cancer Being Won? .. 543

AAAS NEWS
Association Moves to New Location; Secrecy Issue of STHV Available to Members at Discount; Project on Handicapped Receives National Award;
New Insights into The Technological Marketplace Available: B. M. Vetter; Obituaries. 545

BOOK REVIEWS

The Cerebellum and Neural Control, reviewed by P. L. Strick; Supernovae as Distance Indicators, S. van den Bergh; Supermaniolds, J. M. Rubin; The Colonisation of Land, K. S. Thomson; Books Received 547

REPORTS

Mid-Oligocene Extinction Event in North American Land Mammals: D. R. Prothero .. 550

Soil Radon and Elemental Mercury Distribution and Relation to Magmatic Resurgence at Long Valley Caldera: S. N. Williams 551

Cytosolic-Free Calcium Transients in Cultured Vascular Smooth Muscle Cells; Microfluorometric Measurements: S. Kobayashi, H. Kanaide, M. Nakamura 553

Seal Lungs Collapse During Free Diving: Evidence from Arterial Nitrogen Tensions: K. J. Falke et al. .. 556

Hepatitis B Virus DNA Sequences in Lymphoid Cells from Patients with AIDS and AIDS-Related Complex: F. Laure et al. 561

Infection of HTLV-III/LAV in HTLV-I-Carrying Cells MT-2 and MT-4 and Application in a Plaque Assay: S. Harada, Y. Koyanagi, N. Yamamoto 563

T-Cell Receptor β-Chain Expression: Dependence on Relatively Few Variable Region Genes: M. A. Behlke et al. 566

Transition from B to Z DNA: Contribution of Internal Fluctuations to the Configurational Entropy Difference: K. K. Irikura, B. Tidor, B. R. Brooks, M. Karplus. .. 571

PRODUCTS AND MATERIALS

Electrophoresis Unit; Rotary Shaker; DNA Transilluminator; Glass Reaction Autoclave; Biodegradable Scintillator; Amino Acid Analysis Column; Primary Cell Culture Medium; Literature .. 574

COVER

Southern Inyo Crater near Mammoth Lakes in Long Valley Caldera, California. This phreatic explosion crater apparently formed late in a sequence of eruptions which ended 550 years ago. The caldera has, since 1978, been experiencing renewed magmatic resurgence accompanied by uplift and an increase in seismicity and fumarolic activity. See page 551. [Stanley N. Williams, Department of Geology, Louisiana State University, Baton Rouge 70803]
Science and the Philadelphia Story

We are little more than a year and a half away from celebrating the bicentennial of the American Constitution. Are we light-years away from waking up to the impacts of scientific and technological exuberance on the vital propositions of that political statement? Perhaps apocryphal, but nonetheless striking, is the remark ascribed to a scientist and framers of our Constitution, Benjamin Franklin, who emerged from the Philadelphia conclave to tell a curious bystander, "We have given you a republic, sir, if you can keep it..."

Apart from providing for patent and copyright protection, the Constitution is quiet on the subject of science in the affairs of the budding nation. This was natural enough two centuries ago, even though, in the debates over the Constitution, proposals for the encouragement of science were considered and finally dropped. It would have been astonishing had the authors guessed the extent to which science and technology would become entangled with government in the second half of the 20th century—at once enriching, extending, and complicating the political process. Now, however, the intricacy of government's involvement with science is such that the constitutional considerations must be taken seriously.

All things considered, there is little doubt that advances in science and technology have served to fortify the constitutional purposes. The reach of the general welfare clause, for example, has been extended through science with immense benefits to the nation's health, economy, productivity, and industrial capacity. Technology, in turn, has done much to multiply choices, opportunities, and both humanistic and material benefits as well as dilemmas.

It would be fine if we could leave it at that. But it is also the fact that the new centrality of science and technology is imposing pressures on the politics that we practice, especially on those fundamental power equations that are built into the Constitution and that made up the main agenda of the Philadelphia conference. If we mean to keep our republic, that agenda is as much ours as it was theirs.

Some of these power equations bear on the coequal powers of the branches of government, others on the reserved powers of Congress, and still others on the supremacy of civil authority over the military. With scientific and technical complexity suffusing the business of Congress, whose members are overwhelmingly generalists, the task of preserving the coequal status of the Legislative and Executive branches, in fact as well as in the textbooks, is no minor challenge. When the same complexity taxes the abilities of the voters to evaluate technical risk and make informed choices, government by the people is in trouble. When military power is locked into weapons poised for "launch on warning" under delegated authorities, the reservation of the war-making power to Congress is reduced to something akin to fiction, and the supremacy of the civil authority is compromised. All these difficulties require us to think again about our understanding of the equations of power that were so carefully set down by the framers of our Constitution two centuries ago and that we will celebrate in 1987.

The political dialogue of our day is concentrated not on constitutional fundamentals but on issues of immediacy, on taming the budget deficit, on prospective winners and losers under tax reform, on threats of trade wars and anarchy in the Middle East, on insurgency and the enduring enigma of Soviet intentions. What is grist for the media is what focuses our attention and thought. This, too, is a product of scientific and technical inventiveness and is further evidence of altered equations of power.

Science, the progeny of philosophers, scholars, and inventors, is now a prime mover of the goals of a nation. So much power must be reconciled with the checks and balances to which we still subscribe. They are at the heart of the Philadelphia story.—William D. Carey