This Week in Science

LETTERS

EDITORIAL
Plant-Fungal Symbiosis

ARTICLES
The Parkfield, California, Earthquake Prediction Experiment: W. H. Bakun and A. G. Lindh
The Structure of a T = 1 Icosahedral Empty Particle from Southern Bean Mosaic Virus: J. W. Erickson, A. M. Silva, M. R. N. Murthy, I. Fita, M. G. Rossmann

NEWS AND COMMENT
Sparring on Test Ban Likely at NPT Review
Reagan, Gorbachev Trade Offers
Sharing Research Data Urged
Industry Abandons Synfuels Project

Briefing: Lab Chief's Memo Stirs Unease at Illinois; Agaricus's Sojourn in the Regulatory Maze; Johns Hopkins Drops MCAT Requirement; Repeating Problem Caused Shuttle Engine Shutdown; Hughes Names Five Vice Presidents

RESEARCH NEWS
Debate Over Colon Cancer Screening
Proteins for All Seasons
Catastrophism Not Yet Dead
Sperm Competition and the Evolution of Animal Mating Systems, reviewed by L. K. Johnson; Physics of Thermal Gaseous Nebulae, M. Peimbert; The Big Bang and Georges Lemaître, M. Davis; Quantum Fluctuations, J. L. Challifour; Books Received ... 643

Native Iron in the Continental Lower Crust: Petrological and Geophysical Implications: S. E. Haggerty and P. B. Toft .. 647

Discovery of Sodium in the Atmosphere of Mercury: A. Potter and T. Morgan ... 651

Speciation and Symbiotic Dinoflagellates: R. J. Blank and R. K. Trench 656

Chromosome-Sized DNA Molecules of Plasmodium falciparum: L. H. T. Van der Ploeg et al. .. 658

The Brain Connection: The Corpus Callosum Is Larger in Left-Handers: S. F. Witelson .. 665

Genetics of Growth Predict Patterns of Brain-Size Evolution: B. Riska and W. R. Atchley .. 668

Physiological Effects of Transforming Growth Factor in the Newborn Mouse: J. P. Tam .. 673

The pX Protein of HTLV-I Is a Transcriptional Activator of Its Long Terminal Repeats: B. K. Felber et al. .. 675

Cover
Two human brains bisected in the midsagittal plane showing the corpus callosum (outlined by a blue grid). The corpus callosum of the lower specimen is from an ambidextrous female and has a larger midsagittal area than that of the right-handed female presented above it (824 versus 580 square millimeters). See page 665. [Brain dissection by D. Kigar; photography, T. Monus and art production, P. Knowles, Audio Visual Services; cover design by S. F. Witelson, McMaster University, Hamilton, Ontario, Canada]
Plant-Fungal Symbiosis

The current era of deforestation and consequent soil erosion in many countries must ultimately be followed by reforestation. In much of the tropics, the growth of food crops or forests is limited by low availability of phosphate in lateritic soils. The growth of vegetation can be substantially increased by the presence of symbiotic fungi. The benefits of the relation can include enhanced efficiency of uptake of phosphate, drought tolerance, broader pH tolerance, and resistance to certain pathogens. The fungi attach to roots and send out hyphae that increase the volume of soil tapped by the tree or plant. The value of the symbiotic relation has been shown on stripmine sites: seedlings with symbionts prospered while control seedlings languished or died.

Many woody plants have ectomycorrhizal fungi as their symbionts. This group of fungi forms mycelia that surround the roots. Techniques are available to grow the mycelium of these fungi in pure culture. A commercial venture, Sylvan Spawn, of Butler, Pennsylvania, now is able to supply large amounts of fungi prepared from a customer’s isolate. Millions of pine seedlings are already being treated, and the cost per seedling is only about one cent. Benefits include better performance of the seedling in the nursery and better survival and growth in the field. Ultimately a substantial fraction of the 2 billion tree seedlings set out annually in the United States may be treated. The seedlings are obtained from seeds planted in fumigated soil to which the inoculum is added. These procedures are in the process of being mechanized.

When the seedlings and their symbionts leave the favorable environment of the nursery, they enter what may be a hostile circumstance. Thus it is necessary to determine what combination of tree and fungus can best cope with each new environment. Fortunately, some species of the fungi have broad capabilities of associations with trees and of flourishing in a broad spectrum of environments. An example is a culture of Pisolithus tinctorius that was selected and is maintained by D. H. Marx of the Department of Agriculture Forest Service Laboratory in Athens, Georgia.

The symbionts of most food crops and some trees invade the roots, resulting in combinations called vesicular-arbuscular mycorrhizae (VAM). They also act to extend the volume tapped by the plants. About 80 percent of all the plants and trees have VAM symbionts. In the United States VAM has been tested with vegetable and fruit crops. Benefits have been demonstrated with many plants and trees including citrus, sweet gum, and black walnut. Legumes with VAM tend to be better nodulated than those without VAM in soils low in available phosphorus. Considerable research has been devoted to tests of VAM with grain crops. However, application of large amounts of fertilizers produces yields more inexpensively than does the application of VAM. One factor limiting the practical use of VAM is that it has not been possible to grow VAM in pure culture. Another limitation is the poor response of the plant-symbiont relation to substantial levels of available phosphorus. In these circumstances the mycorrhizal fungi do not benefit the plant or may be absent.

Half the land in the tropics has soil poor in available phosphorus, and is thus unfit for agriculture without application of large amounts of phosphate. The use of VAM could reduce the need. Additional cropland could be made available by the use of VAM to increase the salt tolerance and drought resistance of plants.

Further improvement of relation between trees, symbionts, and their environments is likely to take two forms. The potentials for improvement through conventional selection procedures have not been exhausted. In addition, strenuous efforts are being made to improve plants through genetic engineering techniques. These efforts will surely come to include a broad approach to plants and trees that treats them and their symbionts as a system to be optimized.—PHILIP H. ABELSON