AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE

Science serves its readers as a forum for the presentation and discussion of important issues related to the advancement of science, including the presentation of minority or conflicting points of view, rather than by publishing only material on which a consensus has been reached. Accordingly, all articles published in Science are subject to editorial evaluation of their contents and comment, and book reviews—are signed and reflect the individual views of the authors. The AAAS and the institutions with which the authors are affiliated.

Publisher: WILLIAM D. CAREY
Editor: DANIEL E. KOSHLAND, Jr.

Deputy Editors
PHILIP H. ABELSON (Engineering and Applied Sciences), JOHN J. HAMEL (Physical Sciences), GARDNER LINDEZ (Social Sciences)

Editorial Board
PHILIP W. ANDERSON, DAVID BALTIMORE, ANSLEY J. COALE, JOSEPH L. GOLDSTEIN, LEON KNOPOFF, SEYMOUR LIPSET, WALTER MARBY, OLIVER E. NELSON, ALLEN NEWELL, RUTH PAT- bick, VERA C. RUBIN, HOWARD E. SIMMONS, SOLOMON H. SNYDER, ROBERT M. SOLOW

Board of Reviewing Editors

Editorial Staff
Managing Editor: PATRICIA A. MORGAN
Assistant Managing Editors: NANCY J. HARTMAGEL, JOHN E. RINDFLEISCH
Production Editor: ELLEN E. MURPHY
News Editor: BARBARA J. CULITTEN
News and Comment: COLIN NORMAN (deputy editor), MARK H. CRAWFORD, CONSTANCE HOLDEN, ELIZABETH KNIGHT, R. JEFFREY SMITH, MARIDEE SUN, JOHN WALSH
European Correspondent: DAVID DICKER
Research News: ROGER LEWIS (deputy editor), RICHARD A. KERR, GINA KOLATA, JEAN L. MARSHALL, ARTHUR L. ROBINSON, M. MITCHELL WALDROP
Administrative Assistant: News: SCHERRAINS MACK; Editorial Assistant: News: FANNIE GRODIN
Senior Editor: ELEANORE BUTZ, RUTH KULSTAD
Associate Editors: MARK H. CRAWFORD, PAUL LACY, J. T. MARSHALL, R. JEFFREY SMITH, J. M. SUN, JOHN WALSH
Cover Art: STEPHEN KEPPLE, EDITH MIEYER, LORI SCHMITT
Assistant Editor: LISA MCCULLOUGH
Book Reviews: KATHERINE LIVINGSTON, Editor; LINDA HEBRER
Letters Editor: CHRISTINE GILBERT
Cover Design: LINDA M. GIDDES
Production Editor: RUTH M. GUYER
Production: JOHN BAKER, HILLY BISHOP, KATHLEEN CORINNO, ELEANOR WARNER, ISABELLA BOULDIN, SHARON RYAN, BEVERLY SHIELDS
Copyright and Permissions: HART M. FINKEL, ROBERT W. GILBERT
Guides to Scientific Instruments: RICHARD G. SOMMER

ADVERTISING REPRESENTATIVES

Director: EARL J. SCHARROO
Production Manager: DONNA RIVERA
Advertising Sales Manager: THOMAS L. CHARLES
Marketing Manager: HERBERT L. KURLAND
Sales and Marketing Orientation Office: J. K. KEVIN HENLEY, 1515 Broadway (212-730-1050); SCOTCH PLAINS, N.J. 07076; C. Rich- mond, (804) 343-4323; Chicago, IL 60611: 475 N. Michigan Ave. (312-327-2873); CHICAGO, IL 60611: 475 N. Michigan Ave. (312-327-2873); BEVERLY HILLS, CALIF. 90211: M. NACHUM, 111 N. La Cienega Blvd. (213-657-2772); San Jose, CA, 95112 Bob Bradstreet, 310 S. 16 St. (408-998-6069); DORSET, VT 05251: WEDDIE Dieffen- bach, Kent Hill Rd. (802-295-2034)

ADVERTISING CORRESPONDENCE: Tenth floor, 1515 Broadway, New York 10036 (212-730-1050).

TECHNOLOGIES FOR CLEAN USE OF COAL

In the domain of policies related to energy, this country has many problems, including acid rain and costs of imported oil. A recent report from the Department of Energy's Energy Research Advisory Board is a rich source of information on these matters.* The document lists 13 to 15 categories of technologies under development for clean use of coal. In describing their status, the report indicates that progress is being made and that federal co-funding of demonstration facilities would expedite diminution of acidity of rain. Substitution of coal for oil could also be increased.

Coal-fired utility boilers are responsible for 70 percent of the SO2 and 20 to 25 percent of the NOx emitted in this country. The boilers east of the Mississippi account for 16 million tons of SO2 and 4.5 million tons of NOx. Only about 10 percent of the boilers are subject to New Source Performance Standards. The current technology for reducing pollution, flue gas desulfurization (FGD), is costly; it reduces energy conversion efficiency, and the usual sludge is a potential potter of ground water. A new technology, Limestone Injection Multistage Burner (LIMB), appears to be markedly superior to FGD. The LIMB technology is based on injection of a sorbent—limestone, for example—directly into the furnace and its subsequent reaction with SO2 leading to dry calcium sulfate. The LIMB technology is relatively low cost, both for retrofit and operation. It can reduce both SO2 and NOx by 50 to 60 percent for retrofit applications.

The procedures used to achieve reduction of NOx in the LIMB technology are of possible broad application in industrial and other combustors that emit large amounts of NOx. In the LIMB technology, the major burning occurs in a primary stage. Reduction of NOx is accomplished in a second combustion zone that is made reducing in nature, by, for instance, injection of natural gas. The combustion is completed after the second zone at temperatures at which little NOx is formed.

The major coal seams of the Midwest have sulfur contents on the order of 3 to 4 percent and around 10 percent ash. Usually more than half the sulfur is in the form of pyrite (FeS2), a heavy mineral. When coal is ground down to small particles, the noncoal pyrite and ash can largely be removed through physical methods such as flotation of coal on a heavy fluid.

A slurry of 60 percent coal particles and 40 percent water can be moved by pipeline. Demonstrations of use of a slurry with particles about 100 micrometers in size as a substitute for residual oil have been conducted. When the coal is ground to about 40 micrometers or less, performance as an oil substitute appears to be very promising. The total use of oil products in utility and industrial boilers is about 2 million barrels per day. Many utility boilers ordinarily fired by oil are now idle. A lower cost substitute for oil would restore their usefulness. An alternative to coal slurries is the use of two-stage combustion—that is, the coal is gasified in one burner and the gases oxidized in a second boiler previously used for oil or natural gas.

For new industrial and utility boilers, the emerging best technology is fluidized bed combustion. This method is currently being employed successfully in many small- to moderate-sized applications. It leads to low emissions of SO2 and NOx and has the potential of superior energy efficiency. The utilities are in the process of testing it as a retrofit in installations of about 100-megawatt capacity.

To expedite practical application of clean use of coal, full-scale demonstration plants must be built and operated. Private industry, the Electric Power Research Institute, and the Environmental Protection Agency have taken initiatives in this matter. In view of the importance of the clean use of coal, the current budget of about $60 million for DOE support of the many efforts seems small. DOE should reexamine its budgetary priorities.

—PHILIP H. ABELSON

Technologies for Clean Use of Coal

PHILIP H. ABELSON

Science 229 (4716), 819.
DOI: 10.1126/science.229.4716.819

Use of this article is subject to the Terms of Service.