This Week in Science .. 1021

LETTERS
Fusion Program: M. Lloyd; Medicinal Plants: J. A. Duke; M. F. Balandrin and J. A. Klocke; U.S. Oil Consumption: C. Komanoff .. 1036

EDITORIAL
Corporate Classrooms .. 1043

ARTICLES
Research with High-Power Short-Wavelength Lasers: J. F. Holzrichter, E. M. Campbell, J. D. Lindl, E. Storm .. 1045
Defining Lipid Transport Pathways in Animal Cells: R. E. Pagano and R. G. Sleight .. 1051
Oligomerization of Intervening Sequence RNA Molecules in the Absence of Proteins: A. J. Zaug and T. R. Cech .. 1060

NEWS AND COMMENT
“Right-to-Life” Scores New Victory at AID .. 1065
Contraception Research Lagging .. 1068
Weapons Labs Influence Test Ban Debate .. 1067
White House Remarks Worry Nuclear Weapons Designers .. 1068
Briefing: NRC Sees Uncertainties in Reactor Accident Studies; EPA Finds Acid Lakes from Maine to Florida; Scientists Seeking “Spy Dust” in Moscow; Guilty Plea Puts Oraflex Case to Rest .. 1070

RESEARCH NEWS
Hawaiian Drosophila: Young Islands, Old Flies .. 1072
Reverse Transcriptase in Introns .. 1073
A Spatially Resolved Surface Spectroscopy .. 1074
BOOK REVIEWS

Revolution in Science, reviewed by C. C. Gillispie; Developmental Biology, V. D. Vacquier; Functional Vertebrate Morphology, R. J. Raikow; Cooperativity Theory in Biochemistry, M. T. Record, Jr.; Books Received... 1077

REPORTS

Seismic-Reflection Signature of Cretaceous Continental Breakup on the Wilkes Land Margin, Antarctica: S. L. Eittreim, M. A. Hampton, J. R. Childs 1082

Episodic Rifting of Phanerzoic Rocks in the Victoria Land Basin, Western Ross Sea, Antarctica: A. K. Cooper and F. J. Davey 1085

Attractive Forces Between Uncharged Hydrophobic Surfaces: Direct Measurements in Aqueous Solution: R. M. Pashley, P. M. McGuigan, B. W. Ninham, D. F. Evans 1088

Antigenic Variation and Resistance to Neutralization in Poliovirus Type 1: D. C. Diamond et al. 1090

Expression in Brain of a Messenger RNA Encoding a Novel Neuropeptide Homologous to Calcitonin Gene–Related Peptide: S. G. Amara et al. 1094

Immunohistochemical Localization in the Rat Brain of the Precursor for Thyrotropin-Releasing Hormone: I. M. D. Jackson, P. Wu, R. M. Lechan... 1097

Contribution of Promoter to Tissue-Specific Expression of the Mouse Immunoglobulin Kappa Gene: T. V. Gopal, T. Shimada, A. W. Baur, A. W. Niemhuis 1102

Mutation to Herbicide Resistance Maps Within the psbA Gene of Anacystis nidulans R2: S. S. Golden and R. Haselkorn 1104

Responsiveness and Receptive Field Size of Carp Horizontal Cells Are Reduced by Prolonged Darkness and Dopamine: S. C. Mangel and J. E. Dowling 1107

PRODUCTS AND MATERIALS

Scanning Electron Microscope; Monoclonal Antibodies for Study of Immune System; Supercomputer; Electrophoresis Cells; Pixel-for-Pixel Screen Image Plots; Literature 1114

COVER

(Top, left) A 10-terawatt, 1.05-micrometer infrared laser beam from the Novette laser (red is false color from a black-and-white negative). (Bottom, right) A 6-terawatt, 0.53-micrometer beam converted from the Novette laser beam by a “mosaic” array of potassium dihydrogen phosphate harmonic crystals (green is false color from a black-and-white negative). See page 1045. [R. Speck and K. Mans, Lawrence Livermore National Laboratory, Livermore, California 94550]
Corporate Classrooms

Education and training within corporations of the United States is an important and growing industry. It has been estimated that in 1981-82 annual costs were around $60 billion. This was comparable to the total spent by all of the country's 4-year universities and colleges. The number of students trained was also nearly comparable. Educational programs are more abundant and more highly developed in the large technologically active companies than in small companies.

A substantial fraction of the training is for engineers who need to keep abreast of rapidly changing technologies. But all components of the work force may be involved. There is compensatory education for disadvantaged employees and courses for those in management and sales. About 70 percent of corporate education is in-house training, allowing businesses flexibility with respect to content, time, method of presentation, and making changes when desirable. Much of the training is decentralized—that is, it is conducted in the various departments and branches of the companies. However, about 400 business sites include a building or campus devoted to education. Western Electric's Corporate Education Center at Princeton has a 300-acre campus, private rooms, excellent cuisine, and lighted tennis courts. The equipment is technologically advanced and supports effective, intensive courses. The atmosphere at this and other corporate educational centers is intense but cooperative and collegial. Courses are usually short, schedules tight, and goals explicit.

Teaching methods at companies are often similar to those at universities, but more effort is devoted to increasing instructional effectiveness. Computer-assisted instruction is used extensively and films and programmed materials are employed. Computer networks that link voice, graphics, text, and audio allow personalized classrooms. As might be expected, corporations are devoting considerable efforts to improve their instructional methods. Digital Equipment officials assert that they have made notable progress. The company has a computer system called IVIS that analyzes how a particular student learns. The system provides text, voice, graphics, and audio elements and responds to student behavior. Digital says that IVIS-trained students learn up to 53 percent faster and with better retention than students taught by conventional methods.

A potential market exists for university-created videotaped instructional material for corporations. A small fraction of this market is currently being served, and demand is expanding. This demand is being met in part by 28 universities that belong to the Association for Media-Based Continuing Education for Engineers (AMCEE). It rents or sells some 400 videotape courses on engineering and related subjects. The tapes were used at 1500 sites last year. This academic year they will be shown at 2500 sites.

A new organization, the National Technological University (NTU), will grant master's degrees. It plans to use television broadcasting in real time via satellite. Some 19 universities that have television and videotaping facilities are involved, and the best of the professors will be on the air. The latest catalog includes 246 courses. A student in NTU can major in computer engineering, computer science, electrical engineering, engineering management, or manufacturing systems engineering. Students must be sponsored by their employers, who in turn support NTU. Companies involved include Eastman Kodak, General Electric, Hewlett-Packard, and IBM. Thus far, 40 companies participate and a goal is 150 or more.

The new electronic technologies have created new opportunities in education. Many of the values and procedures of the universities have stood the test of time. But as corporate classrooms expand, it is clear that universities should be alert to developments elsewhere.

—PHIL H. ABELSON

† AMCEE, 225 North Avenue, Atlanta, Georgia 30332.
‡ NTU, P.O. Box 700, Fort Collins, Colo. 80522.