This Week in Science .. 1333

LETTERS
The Granting System: A. Nisonoff; J. S. Wicken; Biotechnology and the Biosphere: E. P. Odum .. 1336

EDITORIAL
Use of and Research on Pheromones ... 1343

ARTICLES
Multiphoton Ionization of Atoms: C. K. Rhodes 1345
The Epidemiology of AIDS: Current Status and Future Prospects: J. W. Curran et al. ... 1352
Three-Dimensional Structure of Poliovirus at 2.9 Å Resolution: J. M. Hogle, M. Chow, D. J. Filman ... 1358
Perspective: Picornaviruses Are No Longer Black Boxes: D. Baltimore ... 1366

NEWS AND COMMENT
Americans and French Find the Titanic 1368
The Rise and Decline of Temik .. 1369
Briefing: Avoiding Nuclear War; Congress Urged to Approve China Nuclear Agreement; Universities Urged to Enter the Information Age; Ignition Error Blamed for Ariane Failure ... 1372

RESEARCH NEWS
Fermilab Tests Its Antiproton Factory .. 1374
Making Better Planetary Rings ... 1376
Breast Cancer Consensus ... 1378

BOOK REVIEWS
Sociology and Anthropology in the People's Republic of China, reviewed by R. P. Madsen; Hawks, Doves, and Owls and Preventing Nuclear War,
Transformation of a Tundra River from Heterotrophy to Autotrophy by Addition of Phosphorus: B. J. Peterson et al. 1383
Increase of Atmospheric Methane Recorded in Antarctic Ice Core: B. Stauffer, G. Fischer, A. Neftel, H. Oeschger 1386
Transcription of Novel Open Reading Frames of AIDS Retrovirus During Infection of Lymphocytes: A. B. Rabson et al. 1388
The t(14;18) Chromosome Translocations Involved in B-Cell Neoplasms Result from Mistakes in VDJ Joining: Y. Tsujimoto, J. Gorham, J. Cossman, E. Jaffe, C. M. Croce 1390
Site-Specific Increased Phosphorylation of pp60^src After Treatment of RSV-Transformed Cells with a Tumor Promoter: A. F. Purchio, M. Shoyab, L. E. Gentry 1393
Abnormal Visual Pathways in Normally Pigmented Cats That Are Heterozygous for Albinism: A. G. Leventhal, D. J. Vitek, D. J. Creel 1395
Glucocorticoids Potentiate Ischemic Injury to Neurons: Therapeutic Implications: R. M. Sapolsky and W. A. Pulsinelli 1397
 Characterization of gp41 as the Transmembrane Protein Coded by the HTLV-III/LAV Envelope Gene: F. diM. Veronese et al. 1402
 Atrial Natriuretic Factor Ameliorates Chronic Metabolic Alkalosis by Increasing Glomerular Filtration: M. G. Cogan 1405

PRODUCTS AND MATERIALS

Automated Sample Processing; Artificial Intelligence Systems: Labeled DNA; Pump; Pulse Generator for Monoclonal Antibody Production; Chart Recorders; Incubator Accessory; Coagulation Analyzer 1412

COVER

Extremely rare tyrosinase-negative albino cat (cc) which completely lacks melanin pigmentation. Homozygous albinos (cc) and normally pigmented cats which carry the recessive allele for tyrosinase-negative albinism (Cc) exhibit congenital visual system defects. One to 2 percent of the human population carries a recessive allele for albinism. See page 1393. [Donnell J. Creel, Veterans Administration Medical Center, Salt Lake City, Utah 84148]
Use of and Research on Pheromones

This editorial was written in response to the stimulus of an interesting symposium on pheromones and to stories in the media about a large-scale infestation of gypsy moths in northeastern United States. The symposium, held at the annual meeting of the AAAS, dealt with some of the current frontiers of research on the physiology and regulation of pheromones.* Enthusiasm of the participants was contagious and led to a scan of some of the literature and to a telephone stroll to tap the knowledge and judgment of some of the leaders in the field.

During the past 20 years, more than 1,000 insect sex attractants have been identified. Many have been synthesized in the laboratory and tested. The pheromones of some of the insects are single, optically active compounds. Other pheromones are made up of closely controlled mixtures of several compounds. Sometimes both enantiomers of a compound are employed, but in other cases a racemic mixture is ineffective.

The early enthusiasm about the use of pheromones to control insect populations has dwindled. Although there is a consensus that pheromones are excellent baits for traps, their successful application has been largely confined to monitoring, for which they are highly useful. Experience with the gypsy moth in the Northeast is illustrative. In the area of maximum infestation, populations of moths greater than 10,000 per hectare have been noted. When a female moth emerges, she is close to a large number of males. Under these circumstances, almost all the females are mated before they can begin to emit pheromones. Therefore, the use of the attractant in traps is of little help. In contrast, when populations of gypsy moths are limited, the attractant has a major role. Today the Department of Agriculture maintains 400,000 traps in areas of the country that are currently not infested. These have served an alerting function that has led to eradication or control of local infestations.

A notable success in control of agricultural pests has involved the use of a pheromone for monitoring and trapping coupled with application of pesticides. In North and South Carolina, cotton farmers participate in a program against the boll weevil. The numbers of insects are monitored in 250,000 traps, and insecticides are applied only when needed to hold down the population. As a result, the amount of fertilizer used has been decreased by about 70 percent, and costs of control have dropped.

Infestation of conifers by beetles leads to large-scale destruction of trees. In forests, the use of pesticides is not practical, and the best hope is trapping, disruption of the beetles’ behavior by the use of attractants or repellents, or fostering natural enemies of the beetles, including predators and pathogens. Large-scale use of pheromones in about a million traps in forests in Norway and Sweden during a massive infestation by spruce beetles was accompanied by a decrease in the number of insects, but experts are unsure about the relative roles of traps and natural enemies.

Some of the current research frontiers include studies of modes of biosynthesis of pheromones, mechanisms of their modes of action, and attempts to discover amine that mimic in structure natural neuroamines employed by insects. Some of the questions being asked are: What are the pathways of synthesis of pheromones? How do genes regulate specific blends? What are the genetic controls on perception? Is the system tightly controlled or plastic? Can the pheromone system mutate? When a male moth is flying on the plume of a pheromone emitted by a female, the sensory detection apparatus must be very efficient, and once a molecule has been detected, the molecule must be destroyed if sensitivity is to be maintained. Studies with a moth that uses an ester have shown that the sensors contain an esterase that quickly degrades the ester. Are related pheromones active in other insects?—PHILIP H. ABELSON