This Week in Science .................................................. 603

LETTERS Emotions and Facial Expression: A. J. Fridlund, A. N. Gilbert; C. E. Izard; A. N. Burdett; R. B. Zajonc: ............................................. 607

EDITORIAL Air Pollution and Acid Rain .................................. 617

ARTICLES Energy Extraction and Use in a Nomadic Pastoral Ecosystem: M. B. Coughenour et al. ...................................................... 619
Perspective: Tumor Necrosis Factor (TNF): L. J. Old ................. 630
Structure of the Human Interleukin-2 Receptor Gene: W. J. Leonard et al. .......................................................... 633

NEWS AND COMMENT Patent Dispute Divides AIDS Researchers .................................................. 640
What’s in a Name? ...................................................... 641
HTLV-III and LAV: Similar, or Identical? ................................ 643
Briefing: Reagan Reinterprets the ABM Treaty; Rumors of China-Iran Trade Cloud Nuke Pact; Surveillance Laws Need Overhaul; A Plan to Save Tropical Forests ................................................. 644
Experts Cast Doubts on X-ray Laser ................................... 646

RESEARCH NEWS A Potpourri of Membrane Receptors .................................................. 649
New Mysteries at the Galactic Center ..................................... 652
Predictable Quake Damage.................................................. 65

BOOK REVIEWS

Non-Proliferation and Safeguarding the Atom, reviewed by W. H. Donnelly; The Intellectual and Social Organization of the Sciences, R. L. Simpson; The Biology of Terrestrial Isopods, R. C. Brusca; Solar Maximum Analysis and Solar-Space Observations and Stellar Prospects, J. B. Zirker; Books Received............................................................ 65

REPORTS

The Structure of the Core of the Spiral Wave in the Belousov-Zhabotinskii Reaction: S. C. Müller, T. Plessor, B. Hess........................................... 66
Intracellular Free Calcium Localization in Neutrophils During Phagocytosis: D. W. Sawyer, J. A. Sullivan, G. L. Mandell ................................. 66
High-Frequency Switching of Colony Morphology in Candida albicans: B. Slusky, J. Buffo, D. R. Soll ......................................................... 66
Psoriatic Fibroblasts Induce Hyperproliferation of Normal Keratinocytes in a Skin Equivalent Model in Vitro: P. Siaig, B. Coulomb, C. Lebreton, E. Bell, L. Dubertret........................................ 66
Chromosomal Locations of Human Tissue Plasminogen Activator and Urokinase Genes: B. Rajput et al. ..................................................... 67
Phytochelatins: The Principal Heavy-Metal Complexing Peptides of Higher Plants: E. Grill, E.-L. Winnacker, M. H. Zenk ........................................ 67
Wounding and Its Role in RSV-Mediated Tumor Formation: D. S. Dolberg, R. Hollingsworth, M. Hertle, M. J. Bisell .................................. 67
Iron(II) EDTA Used to Measure the Helical Twist Along Any DNA Molecule: T. D. Tullius and B. A. Dombrowski ..................................... 67
Hypoglycemia-Induced Neuronal Damage Prevented by an N-Methyl-D-Aspartate Antagonist: T. Wieloch .................................................. 68

PRODUCTS AND MATERIALS

Cell Culture Labware; Immunoassay; Syringe Filters; Data Recorder; Research Immunoassays; Spectrometer; Literature ........................................ 68

SECTION (4.5 by 4.5 millimeters) of a spiral wave of chemical activity traveling through a 1-millimeter layer of quiescent, excitable Belousov-Zhabotinskii reagent catalyzed by ferroin. The concentration distribution of ferroin was measured by means of a two dimensional spectrophotometer based on a video camera, a video frame buffer, and a computer. The core of the spiral—a singular site at which the ferroin concentration remains almost constant—is contained within the green circle. The colored curves are Archimedian spirals fitted to isointensity levels that correspond to the lowest (blue) and the highest (red) measured intensities and to the intensity at the core (yellow). See page 661. [S. C. Müller Max-Planck-Institut für Ernährungsphysiologie, D-4600 Dortmund, Federal Republic of Germany]
Air Pollution and Acid Rain

Research being conducted on air pollution and acid rain is leading to a changing picture of the relative importance of SO2 and NOX. Political and regulatory efforts have been focused on sulfur oxides because they produced about twice as much acid as NOX. However, that emphasis disregards the role of NOX in the formation of toxic photochemical oxidants. Controlled studies at experimental facilities and observations in the field have identified effects of ozone and NOX as more damaging to vegetation than SO2 alone.

In sunlight a complex series of reactions occurs in the troposphere including photolysis of NOX to produce excited atomic oxygen and thence ozone. Additional reactive species include hydrogen peroxide, methyl hydroperoxide, peroxyacetic acid, and reactive free radicals, including OH, NOX, and HOx. Maxima in the amounts of these species usually occur between 9:00 a.m. and 4:00 p.m. in midsummer. Monitoring has revealed considerable variability in concentrations of the oxidizing pollutants related to abundance of the input substances. Some ozone may be present that originates in the stratosphere.

It has been known that SO2, NOX, and O3 can have toxic effects on plants. In the early days, experiments tended to be performed "scientifically"; that is, plants were exposed in chambers in which the chemicals were tested one at a time. Under those circumstances, it was noted that concentrations of NOX and SO2 greater than ambient were required to produce notable pathology. Indeed, low concentrations of NOX were sometimes beneficial (perhaps a fertilizer effect). However, in the real world, pollutants are present together. When experiments were conducted with ambient midday levels of ozone present (for example, 50 to 100 parts per billion), toxicity was noted. When the ozone was supplemented with NOX, there was usually a substantial additional toxicity attributable to NOX. Similar results were noted when ozone was supplemented with SO2.

The deleterious effects of ozone on agricultural crops have been documented and analyzed in a report* issued by the Environmental Protection Agency. It is estimated that a reduction in ambient ozone levels of 25 percent would produce nearly $2 billion in benefits, while a 25 percent increase in ozone would lead to an additional $2.3 billion in crop losses.

The photochemical oxidants, particularly OH, have an important role in the oxidation of SO2 leading to H2SO4. In the summer, with abundant OH present, the oxidation proceeds much more rapidly than in winter. Sulfur dioxide oxidation in winter and summer are about the same, but the total deposition of sulfate in January and February at stations in northeastern states was found to be a third or less than what it was in midsummer. Deposition of nitrate showed little seasonal effect. Thus, at the crucial time of the spring runoff, the contribution of nitric acid was about equivalent to that of sulfuric acid.

Initiatives to reduce acid rain tend to be centered on the electrical utilities and on their emissions of SO2. When new coal-fired plants are built, they are required to include facilities for flue gas desulfurization. This adds substantially to the cost of the plant, decreases the efficiency of energy conversion to electricity, and diminishes overall reliability. While the process is effective in capturing SO2, it is ineffective in removing NOX. Any program aimed at reducing acid rain should take into consideration the total air pollution problem, including NOX. Efforts to reduce SO2 emissions should be accompanied by a corresponding emphasis on reducing NOX, whatever the source. For the electrical utilities, this would mean providing more flexibility to use technologies that reduce both SO2 and NOX. But in addition, the other large contributors to NOX, such as motor vehicles, should come under scrutiny.—PHILIP H. ABELSON