This Week in Science ... 132

LETTERS Nutrition Report and the Academy: H. Kamin; R. E. Olson; F. Press; Understanding Science: M. Goran; W. J. Haas; D. F. Cox 132

ARTICLES Fluid Beds: At Last, Challenging Two Entrenched Practices: A. M. Squires, M. Kwauk, A. A. Avidan .. 132
Peptide Neurotoxins from Fish-Hunting Cone Snails: B. M. Olivera et al. 133
The 3' Splice Site of Pre-Messenger RNA Is Recognized by a Small Nuclear Ribonucleoprotein: B. Chabot, D. L. Black, D. M. LeMaster, J. A. Steitz. 134
Enzymatic Amplification of β-Globin Genomic Sequences and Restriction Site Analysis for Diagnosis of Sickle Cell Anemia: R. K. Satki et al. 135

NEWS AND COMMENT AIDS Therapy: New Push for Clinical Trials 135
AIDS Virus Presents Moving Target 135
An Avalanche of New Cash .. 135
Fight Over South African Ban Intensifies 135
Briefing: Agencies Brace for Cuts in FY-86 Program Budgets; Congressmen Seek Delay in X-ray Laser Test; Credit for University R&D Offered in Tax Reform Bill; GAO Finds Errors in A-Bomb Test Data 136
Britain Pulls Out of Unesco .. 136
Britain Joins SDI Research .. 136
Beggs Takes a Leave of Absence at NASA 136

RESEARCH NEWS Plate Tectonics Goes Back 2 Billion Years 136
New Sickle Cell Test .. 136

SCIENCE is published weekly on Friday, except the last week in December, by the American Association for the Advancement of Science, 1333 H Street, NW, Washington, D.C. 20005. Second class postage (publication No. 484460) paid at Washington, D.C., and at an additional entry. Copyright © 1986 by the American Association for the Advancement of Science. Domestic individual membership and subscription ($1 issues): $66. Domestic institutional subscription ($1 issues): $98. Foreign postage extra: Canada $24, other (surface $27, air-surface via Amsterdam $65. First class, airmail, school-year, and student rates on request. Single copies $2.50 ($3 by mail); back issues $3 ($3.50 by mail); BioTechnology issue, $5 ($5.50 by mail). Change of address: allow 6 weeks, giving old and new addresses and seven-digit account number. Authorization to photocopy material for internal or personal use and for reuse in all spaces within the fair use provisions of the Copyright Act is granted by AAAS to libraries and other users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the base fee of $1 per copy plus $0.10 per page is paid directly to CCC, 21 Congress Street, Salem, Massachusetts 01970. The identification code for Science is 0036-8075/86 $3.00 Copyright © 1986 by the American Association for the Advancement of Science. All rights reserved. POSTMASTER Send Form 3579 to Science, 1333 H Street, NW, Washington, D.C. 20005. Science is indexed in the Reader's Guide to Periodical Literature and in several specialized indexes.
Burst of Publicity Follows Cancer Report .. 1367

BOOK REVIEWS

The Origins of Individual Differences in Infancy, reviewed by R. S. Wilson; No Sacrifice Too Great, R. D. Cuff; Adaptive Mechanisms in Gaze Control, R. A. Andersen; Prehistoric Europe, M. A. Jochim; Books Received .. 1369

REPORTS

Platinized Chloroplasts: A Novel Photocatalytic Material: E. Greenbaum 1373

A New Class of Steroids Inhibits Angiogenesis in the Presence of Heparin or a Heparin Fragment: R. Crum, S. Szabo, J. Folkman .. 1375

Promoter Region of the Human Harvey ras Proto-oncogene: Similarity to the EGF Receptor Proto-oncogene Promoter: S. Ishii, G. T. Merlino, I. Pastan 1378

Sequence of the Immunodominant Epitope for the Surface Protein on Sporozoites of Plasmodium vivax: T. F. McCutchan et al. ... 1381

Brain-Derived Acidic Fibroblast Growth Factor: Complete Amino Acid Sequence and Homologies: G. Gimenez-Gallego et al. ... 1385

A Model for Fibrinogen: Domains and Sequence: J. W. Weisel, C. V. Stauffacher, E. Bullitt, C. Cohen ... 1388

Repression of the Immunoglobulin Heavy Chain Enhancer by the Adenovirus-2 EIA Products: R. Hen, E. Borrelli, P. Chambon ... 1391

Hematopoietic Histoincompatibility Reactions by NK Cells in Vitro: Model for Genetic Resistance to Marrow Grafts: C. Bordignon, J. P. Daley, I. Nakamura 1396

Detection of DNA Sequences in Nuclei in Suspension by in Situ Hybridization and Dual Beam Flow Cytometry: B. Trask, G. van den Engh; J. Landegent, N. J. in de Wal, M. van der Ploeg .. 1401

A Human Y-Linked DNA Polymorphism and Its Potential for Estimating Genetic and Evolutionary Distance: M. Casanova et al. .. 1403

COVER

Colloidal platinum precipitated onto photosynthetic membranes and entrapped on filter paper viewed in reflected and transmitted light (about ×8). This moistened material is capable of the simultaneous photoevolution of hydrogen and oxygen when irradiated at any wavelength in the chlorophyll absorption spectrum. The bright orange spots are punctures used to drain excess fluid from the clogged filter paper. See page 1373. [B. K. Norris and J. P. Eubanks, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831]
1986: A Vintage Year for Space Science

If all goes as planned, it appears that the coming year will be an extraordinarily good one for space science. In addition to the ongoing program of space research, a number of major space events that were started years ago will, largely by chance, all come together during 1986.

Mankind's first encounter with the planet Uranus will take place on 24 January. The Voyager 2 spacecraft, now 3 billion kilometers into its grand tour of the solar system, will pass within about three planetary radii of the Uranus cloud tops. Various telescopic observations show remarkable things happening at Uranus. The planet is tipped on its side with its south pole now pointing toward the sun; it is surrounded by a series of threadlike rings that demonstrate a surprising stability; and Uranus fluctuates brightly in ultraviolet light by means of a power source that is not understood. Our experience with Jupiter and Saturn has convincingly demonstrated both the inadequacy of research limited to observations from Earth and the superiority of nature's imagination over that of even the more inventive researcher. We may see another such demonstration at Uranus.

The next major event is a flyby of Comet Halley by six spacecraft from four nations. Although the spacecraft were launched months apart, all but one will pass Halley during an 8-day interval in March. The Soviet spacecraft Vega 1 will pass close to the comet on Thursday, 6 March. On Saturday, Suisei, the first of two Japanese spacecraft arrives. The second Vega will fly by on Sunday. The week continues with a distant encounter on Tuesday by Sakigake, the second Japanese spacecraft. Then, on Thursday, 23 March, the European probe Giotto will make a daring attempt to pass close to Halley's nucleus. The International Comet Explorer, an American spacecraft and veteran comet chaser that 6 months earlier flew through the tail of Comet Giacobini-Zinner, is the last. Because it arrives 2 weeks later than the others, it will pass only in the distant vicinity of Halley. Comet Halley will also be observed from Earth orbit by the Astro 1 telescope assembly and by the Spartan-Halley experiment. Although Halley's comet may well disappoint the general population, most of whom will not even be able to find it in their night sky, space scientists look forward to this brief period in March with justified anticipation.

Launches of several important new spacecraft are scheduled for 1986. These hold the promise of years of fruitful data acquisition for whole communities of space scientists. In May, there are two: the first is Ulysses, which will first go to Jupiter and then roam through the as yet unexplored regions over the poles of the sun. The second is Galileo, which will go to Jupiter, there to split into two spacecraft. One section will plunge through the clouds to explore Jupiter's dense atmosphere below, while the other section orbits the planet to examine in detail its moons, planetary magnetic field, and radiation belts. On its way to Jupiter, Galileo may be sent near the asteroid Amor in late December, thus closing the year with a first close-up look at one of the large bodies in the asteroid belt.

In terms of its potential scientific value, the launch of the Hubble Space Telescope by the space shuttle is perhaps the grand event of the year. The space telescope is expected to be the most influential astronomical instrument ever put into space. It will operate for years, examining selected portions of the universe with such clarity and precision that it is regarded by some astronomers as an advance rivaling Galileo's first use of the telescope for astronomy nearly 400 years ago.

The science of space is still in an early phase in which much of the solar system is yet to be explored and understood. We have not reached a level of predictive understanding that enables us to solve distant astrophysical mysteries by application of knowledge obtained from solar-system research. Our capability to generalize and extrapolate in space science is bound to be improved by the events of 1986.—A. J. Dessler, Director, Space Science Laboratory, NASA Marshall Space Flight Center, Huntsville, Alabama 35812