This Week in Science

Editorial

1485 Materials Science and Engineering

Letters

1486 Human Immunodeficiency Virus: F. Brown ■ DOE Fusion Program: A. J. Glass; M. Crawford ■ European Space Telescope: R. M. Bonnet; G. Rieke

News & Comment

1488 Inquiry Faults Shuttle Management
1489 Science Adviser Named
1490 Ground Water Ills: Many Diagnoses, Few Remedies
1493 GAO Blasts Bigeye Chemical Weapon
1494 Briefing: OMB Floats New Indirect Cost Plan ■ GAO Backs Decision to Conduct X-ray Laser Test ■ EPA Reduces Penalty Against Biotech Firm

Research News

1496 U.S. Electronics Needs New Strategy
1497 Anthropologists Suggest Cannibalism Is a Myth
1500 Molecular Neuroscience Briefing: Lost Neurons Identified in Alzheimer’s Disease ■ Nerve Activity Alters Neurotransmitter Synthesis ■ Trophic Factor Aids Synapse Formation

Policy Forum

1508 Subsidizing Research: Role of the University: R. M. Rosenzweig ■ The Case for a Return to Fixed Indirect Costs: P. D. Boyer

Articles

1511 Overview of the Shuttle Imaging Radar-B Preliminary Scientific Results: C. Elachi, J. Cimino, M. Settle
1517 Anisotropy of the Cosmic Blackbody Radiation: D. T. Wilkinson

Research Articles

1523 Detection of Water Vapor in Halley’s Comet: M. J. Mumma, H. A. Weaver, H. P. Larson, D. S. Davis, M. Williams

SCIENCE is published weekly on Friday, except the last week in December, and with a plus issue in May by the American Association for the Advancement of Science, 1333 H Street, NW, Washington, DC 20005. Second-class postage (publication No. 484460) paid at Washington, DC, and at an additional entry. Combined with The Scientific Monthly. Copyright © 1986 by the American Association for the Advancement of Science. Domestic individual membership and subscription ($11); $65. Domestic institutional subscription ($1 issue); $98. Foreign postage extra: Canada $24, other (surface mail) $27, air-mail via Amsterdam $65. First class, airmail, school-year, and student rates on request. Single copies $2.50 ($3 by mail); back issues $4 ($4.50 by mail); Biotechnology issue, $5.50 ($6 by mail); classroom rates on request; Guide to Biotechnology Products and Instruments $16 ($17 by mail). Change of address: allow 6 weeks, giving old and new addresses and seven-digit account number. Authorization to photocopy material for internal or personal use under circumstances not falling within the fair use provisions of the Copyright Act is granted by AAAS to libraries and other users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the base fee of $1 per copy plus $.10 per page is paid directly to CCC, 21 Congress Street, Salem, Massachusetts 01970. The identification code for Science is 0036-8075/86 $1 + .10. Postmaster: Send Form 3579 to Science, 1333 H Street, NW, Washington, DC 20005. Science is indexed in the Reader’s Guide to Periodical Literature and in several specialized indexes.

The American Association for the Advancement of Science was founded in 1848 and incorporated in 1874. Its objects are to further the work of scientists, to facilitate cooperation among them, to foster scientific freedom and responsibility, to improve the effectiveness of science in the promotion of human welfare, and to increase public understanding and appreciation of the importance and promise of the methods of science in human progress.
Cover Perspective view from the southeast with 50% vertical exaggeration of Mount Shasta, a 14,000-foot Cascade chain volcano in northern California. A digital topographic map generated by F. Leberl (Vexcel Corp.) and J. Raggam (Graz Technical University, Graz, Austria) from a SIR-B stereo image pair was used to rectify and reproject one of the images into this view, in which colors from dark green through pink to white are proportional to 23-centimeter radar brightness. See page 1511. [M. Kobrick, Jet Propulsion Laboratory, Pasadena, CA]

Reports

1535 pH-Induced Metabolic Transitions in Artemia Embryos Mediated by a Novel Hysteric Trehalase: S. C. Hand and J. F. Carpenter

1540 Estrogen-Induced Factors of Breast Cancer Cells Partially Replace Estrogen to Promote Tumor Growth: R. B. Dickson, M. E. McManaway, M. E. Lippman

1543 Blockade of Visual Excitation and Adaptation in Limulus Photoreceptor by GDP-β-S: A. Fein

1554 Calcium Modulation Activates Epstein-Barr Virus Genome in Latently Infected Cells: A. Faggioni, C. Zompetta, S. Grimaldi, G. Barile, L. Frati, J. Lazzinis

Book Reviews

1558 Judging the Jury, reviewed by W. D. Loh ■ Kapitza, D. Holloway ■ Comparison of Ab Initio Quantum Chemistry with Experiment for Small Molecules, K. Jordan ■ Molecular Astrophysics, W. D. Langer ■ Books Received

Products & Materials

1561 Dissolution Apparatus ■ Northern and Southern Blot Analysis ■ Culture Storage Cabinets ■ Supercomputer Line ■ Refrigerator ■ Molecular Modeling ■ Literature
Materials Science and Engineering

Given high-quality materials and superior designs for function and for manufacturing, superior products can be created at minimal cost. The Japanese have been more vigorous than we in exploring the potentials of materials, but activity in the United States is expanding. A symposium at the recent AAAS meeting in Philadelphia permitted a glimpse into some of the activities in progress.* Major fields of materials include polymers, composites, magnetic materials, semiconductors, fiber optics, and ceramics. In general, while new materials are still being discovered, major emphasis now is on processing.

New insights were presented about the behavior of mixtures of polymers and especially the behavior of composites containing strengthening fibers. Highly complex shapes and structures can be made by injection moulding, and this technique will be used increasingly in automobiles and in making other items. The strength of such items in any given direction is highly dependent on the placement of fibers. Computer modeling of fiber orientation would permit improved designs. Computer analysis of many facets of behavior of polymers and mixtures of polymers under stress is now beginning. Increasingly composites are being used in airplanes and their large-scale adoption would be hastened were they better conductors of electricity and thus less susceptible to lightning strikes. Graphite fibers used in composites can be made nearly as conductive as copper through incorporation of substances such as CuCl$_2$ between the layers of the graphite structure.

For most applications involving semiconductors, silicon will continue to be the prime choice. But gallium arsenide can emit light. Silicon cannot. Gallium arsenide circuits have speeds 10 to 100 times those of silicon. The drawbacks are many, including difficulty of creating perfect single crystals. Experiments on the space shuttle indicate that perfection can be achieved in a microgravity field. Precise conductor connections between semiconductor circuits can be made by laser irradiation of organometallic films. This process is being improved through research.

An increasing number of techniques are available for rapid solidification of metals. These permit production of very fine grained metals and alloys that can be sintered together to create objects with superior strength and resistance to creep. The fast cooling techniques and subsequent metal forming of powders can be used to construct turbine blades with internal air cooling. These blades can function in gases at temperatures 500°C higher than the melting point of the metal.

Advances in ceramics were also discussed. The current technology for transmission of information through SiO$_2$ fibers involves repeater stations required at roughly 100-kilometer intervals. A goal worth achieving is transmission from London to New York without a repeater. Such a goal is theoretically possible with the use of fluoride-containing glasses—for example, a mixture of ZrF$_4$, BaF$_2$, LaF$_3$, AlF$_3$, and NaF. Good progress is being made toward the goal. A powder of Al$_2$O$_3$ can be sintered at temperatures approaching its melting point of 2050°C to form a very strong and transparent glass for use in high-pressure sources of light. The process now in use requires hours. By sintering in a plasma (at temperatures on the order of 5000°C) the time required can be reduced to some seconds.

For detecting changes in pressure or pressure waves, single crystals of substances such as lead zirconium titanate (PZT) have long been employed. However, for undersea applications single crystals are not very sensitive. A design methodology has been found that combines ceramics and polymers in composite piezoelectric transducers highly sensitive to pressure changes. The new transducers have potential applications in medical ultrasonics and will allow robots to "feel" the objects they grip.

The dominant materials of a decade ago are being supplemented or replaced by new superior combinations. Computer modeling is improving designs. A materials science and engineering revolution is under way that will be a key factor in determining the outcome of global economic competition.—PHILIP H. ABELSON

*The symposium, "The Changing World of Materials," was organized by Winold Brostow of Drexel University in Philadelphia. The speakers and topics are listed in the meeting program.