<table>
<thead>
<tr>
<th>Section</th>
<th>Article</th>
</tr>
</thead>
<tbody>
<tr>
<td>Editorial</td>
<td>This Week in Science</td>
</tr>
<tr>
<td>Editorial</td>
<td>Spanking, Reason, and the Environment</td>
</tr>
<tr>
<td>News & Comment</td>
<td>Sex and Needles, Not Insects and Pigs, Spread AIDS in Florida Town</td>
</tr>
<tr>
<td>News & Comment</td>
<td>French R&D: à la Reagan with Dash of De Gaulle</td>
</tr>
<tr>
<td>News & Comment</td>
<td>Woburn Case May Spark Explosion of Lawsuits</td>
</tr>
<tr>
<td>News & Comment</td>
<td>Briefing: Science Agencies Fare Well in Budget Battles ■ Education Secretary Uses Harvard Podium to Take Host to Task ■ Hanford Plant Closed Over Safety Violation ■ Hoechst Tests Lead EPA to Ban Herbicide ■ Panel Questions Shuttle Flight Rate</td>
</tr>
<tr>
<td>Research News</td>
<td>New Class of Animal Virus Found in Virulent Form of Human Hepatitis</td>
</tr>
<tr>
<td>Research News</td>
<td>An Optical Measurement of Berry’s Phase</td>
</tr>
<tr>
<td>Research News</td>
<td>Shaping New Tools for Paleoceanographers</td>
</tr>
<tr>
<td>Articles</td>
<td>The trans Golgi Network: Sorting at the Exit Site of the Golgi Complex: G. Griffiths and K. Simons</td>
</tr>
<tr>
<td>Articles</td>
<td>What Has Happened to Productivity Growth?: M. N. Bally</td>
</tr>
<tr>
<td>Research Articles</td>
<td>Saturation Mutagenesis of the Yeast his3 Regulatory Site: Requirements for Transcriptional Induction and for Binding by GCN4 Activator Protein: D. E. Hill, I. A. Hope, J. P. Macke, K. Struhl</td>
</tr>
</tbody>
</table>
Reports

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>459</td>
<td>Interannual Variability of Global Dust Storms on Mars: R. M. HABERLE</td>
</tr>
<tr>
<td>461</td>
<td>Gap Junctional Conductance and Permeability Are Linearly Related: V. VERSELS, R. L. WHITE, D. C. SPRAY, M. V. L BENNETT</td>
</tr>
<tr>
<td>474</td>
<td>Cultivation of Rhinopodidium seeberi in Vitro: Interaction with Epithelial Cells: M. G. LEVY, D. J. MEUTEN, E. B. BREITSCHERD</td>
</tr>
<tr>
<td>476</td>
<td>Human Monoclonals from Antigen-Specific Selection of B Lymphocytes and Transformation by EBV: P. CASALI, G. INGHIRAMI, M. NAKAMURA, T. F. DAVIES, A. L. NOTKINS</td>
</tr>
<tr>
<td>479</td>
<td>Synchronized Rearrangement of T-Cell γ and β Chain Genes in Fetal Thymocyte Development: W. BORN, G. RATHBUN, P. TUCKER, P. MARRACK, J. KAPPLER</td>
</tr>
</tbody>
</table>

AAAS Meetings

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>483</td>
<td>Science and Security: The Future of Arms Control: Program ■ Advance Registration Form</td>
</tr>
</tbody>
</table>

Book Reviews

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>490</td>
<td>The Positive Sum Strategy, reviewed by R. C. LEVIN ■ Circulation, Respiration, and Metabolism, S. C. WOOD ■ Cell Motility, D. R. BURGESS ■ Books Received</td>
</tr>
</tbody>
</table>

Products & Materials

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>494</td>
<td>Expert System for Experimental Design ■ Microprocessor-Monitored Photometer ■ Kit for RNA Synthesis ■ Digital Oscilloscope Peripheral ■ Pyrolytic Analyzers ■ Literature</td>
</tr>
</tbody>
</table>

TABLE OF CONTENTS

24 OCTOBER 1986

Board of Directors

- Robert McC. Adams
- Robert W. Berliner
- Floyd E. Bloom
- Mary E. Clutter
- Mildred S. Dresselhaus
- Donald N. Langenberg
- Dorothy Nelkin
- Linda S. Wilson
- William T. Golden
- Allen Newell
- Ruth Patrick
- David V. Regone
- Vera C. Rubin
- Howard E. Simmons
- Solomon H. Snyder
- Robert M. Solow

Editorial Board

- David Baltimore
- William F. Brinkman
- Ansley J. Coale
- Joseph L. Goldstein
- James D. Idol, Jr.
- Leon Knopoff
- Seymour Lipset
- Walter Massey
- Oliver E. Nelson
- Allan Newell
- Ruth Patrick
- David V. Regone
- Vera C. Rubin
- Howard E. Simmons
- Solomon H. Snyder
- Robert M. Solow

Board of Reviewing Editors

- Qais Al-Awadi
- James P. Allison
- Luis W. Alvarez
- Don L. Anderson
- C. Paul Bianchi
- Elizabeth H. Blackburn
- Floyd E. Bloom
- Charles R. Cantor
- James H. Clark
- Bruce F. Eldridge
- Stanley Faislow
- Theodore H. Geballe
- Roger I. M. Glass

Editors

- Stephen P. Goff
- Robert B. Goldberg
- Patricia S. Goldman-Rakic
- Corey S. Goodman
- Richard M. Held
- Gloria Heppner
- Eric F. Johnson
- Konrad B. Krauskopf
- Karl L. Magleby
- Joseph B. Martin
- John C. McGiff
- Alton Meister
- Mortimer Mishkin
- Peter Olson
- Gordon H. Orians
- John S. Pearse
- Yeshayau Pocker
- Jean Paul Revel

Board of Editors

- Frederic M. Richards
- James E. Rothman
- Thomas C. Schelling
- Ronald H. Schwartz
- Stephen M. Schwartz
- Otto T. Sobrig
- Robert T. N. Tjian
- Virginia Trimboli
- Gerast J. Vermeij
- Martin G. Weigert
- Harold Weirtraub
- Irving L. Weissman
- George M. Whitesides
- Owen N. Witte
- William B. Wood
- Harriet Zuckerman
Spanking, Reason, and the Environment

An exceedingly logical friend of mine told me that when he was 10 years old and playing peacefully with his siblings, his father suddenly picked him up and spanked him. He turned in bewilderment to ask, “What did I do to deserve that?” “Nothing,” his father replied. “Then why was I spanked?” “To teach you that this is not a rational world,” was the answer. Even scientists without perceptive and theatrical fathers eventually learn that this is not a rational world. It should be part of our responsibility, however, to make it more so.

A sizable expansion of research by the Environmental Protection Agency (EPA) should be encouraged in the years ahead. Emotion runs high on environmental issues and the EPA has been marred by political factionalism. Yet it deals with our most precious and increasingly threatened resources: the air we breathe, the water we drink, and the soil that nourishes our food sources. Environmentalists argue that we are doing too little to protect our resources; industry argues that excessive regulation stifles progress. The reality is that we live in a world that becomes more densely populated each year and that population depends on chemicals for its food and its standard of living. So the problems will only become more serious, and they cannot be solved by headlines, law cases, or political posturing.

In the past when faced with problems in health, fuel resources, defense, and food supplies, we responded with programs of basic research that paved the way for vast improvements. The environmental problems may be even more difficult. First, their solutions are bound to be costly and therefore opposed by both special interests and taxpayers. Second, the research is complex, requiring risk assessment analyses that train current theories and are not easy to explain to lay audiences. Third, many of the solutions require international as well as national cooperation. Acquisition of convincing data is even more important when nonprofessionals must be persuaded of a course of action involving complex science. Time is of the essence. Governments delay action, claiming “lack of facts,” as the clock ticks against a background of a deteriorating environment.

The current EPA research budget is approximately $300 million, but it is almost all devoted to specific problems: a selenium contamination of water in California, an acid rain problem in the Great Lakes, a toxic waste dump in New York. The specific problems must be pursued, but basic knowledge is needed to develop broad strategies as well as innovative solutions. The Superfund costs are in the billions; asbestos cleanup costs are staggering; the science of risk assessment itself is in a primitive state; the EPA is entering the recombinant DNA field, when most of the expertise is found in the National Institutes of Health. All of these areas are candidates for a basic research approach.

Furthermore, the type of research and its spatial requirements are unconventional. One model may be found in the recent opening by the Department of Energy of the gaseous fuels test site in Mercury, Nevada. Far away from any populated area, the facility is constructed to test the spread of toxic gases such as the methyl isocyanate released at Bhopal or hydrofluoric acid, a corrosive but widely used chemical. Tests are planned on protective measures such as vapor fences and detoxification techniques. A rational policy for toxic waste disposal requires facts, and this experimental approach is laudable.

A tripling of the EPA research budget is not unreasonable in view of the need. This could be achieved over the next couple of years mainly through a greatly expanded extramural program. EPA would be well advised to model its research program on the successful NIH example, with most of its research in a peer-reviewed extramural program but with a sizable intramural program as well. Because most of its research is inevitably controversial, it will gain by the outside component, both in terms of expertise and credibility.

There will be those who believe that these issues have become so politicized that they can only be solved by the media and publicity, others who say that they require lawyers and litigation, and still others who say that they devolve on politics and money. I would like to believe reason and data can be used to make decisions, but then I was never spanked at an appropriately impressionable age.—DANIEL E. KOSHLAND, JR.