This Week in Science

Editorial

9 Materials Research

Perspective

12 Applied Research: Key to Innovation: A. M. Clogston

Letters

14 Recombinant DNA: International Guidelines: H. I. Miller and F. E. Young
Growth Hormone Use: B. M. Sherman; W. Regelson SDI Research Funds: G. D. Mostow
Net Primary Production: The Tomato Example: B. L. Godfrey

News & Comment

17 End Game for the N Reactor?
19 Textbook Controversy Intensifies Nationwide: Romeo and Juliet and Youth Suicide
22 Creationism Case Argued Before Supreme Court
23 Use of Berkeley Reactor Questioned on Military-Related Research
24 Student Protests Block University Changes
26 Briefing: Feerstin Close Stanford Branches Out Human Values in Medical Schools Peace Institute Grants A $300-Million LINK

Research News

27 Free Electron Laser Success Explained
29 Planetary Scientists Are Seeing the Unseeable: More Clues to Asteroid–Dead Comet Connections Mysterious Pluto May Shrink No Longer IRAS Puts Astronomers Out of (One) Business From Its Shape, a Look Inside Mimas Rice Plants Regenerated from Protoplasts

Articles

33 The Volatility of Stock Market Prices: R. J. Shiller
46 Multiple Calcium Channels and Neuronal Function: R. J. Miller

Research Articles

53 Diversity of Alpha-Fetoprotein Gene Expression in Mice Is Generated by a Combination of Separate Enhancer Elements: R. E. Hammer, R. Krumlauf, S. A. Camper, R. L. Brinster, S. M. Tilghman

Reports

59 A Revisit to the Guest Star of A.D. 185: Y.-L. Huang and G. H. Moriarty-Schievan
61 Trace Fossil Evidence for Late Ordovician Animals on Land: G. J. Retallack and C. R. Fakes

SCIENCE is published weekly on Friday, except the last week in December, and with an extra issue in February by the American Association for the Advancement of Science, 1333 H Street, NW, Washington, DC 20005. Second-class postage (publication No. 484460) paid at Washington, DC, and at an additional entry. Now combined with The Scientific Monthly. Copyright © 1986 by the American Association for the Advancement of Science. The title SCIENCE is a registered trademark of the AAAS. Domestic individual membership and subscription (51 issues): $65. Domestic institutional subscription (51 issues): $98. Foreign postage extra: Canada $32, other (surface mail) $27, air-surface via Amsterdam $65. First class, airmail, school-year, and student rates on request. Single copies $2.50 ($3 by mail); back issues $4 ($4.50 by mail); Biotechnology issue, $5.50 ($6 by mail); classroom rates on request; Guide to Biotechnology Products and Instruments $16 ($17 by mail). Change of address: allow 6 weeks, giving old and new addresses and seven-digit account number. Authorization to photocopy material for internal or personal use under circumstances not falling within the fair use provisions of the Copyright Act is granted by AAAS to libraries and other users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the base fee of $1 per copy plus $0.10 per page is paid directly to CCC, 21 Congress Street, Salem, Massachusetts 01970. The identification code for Science is 0036-8075/83 $1 + .10. Postmaster: Send Form 3579 to Science, 1333 H Street, NW, Washington, DC 20005. Science is indexed in the Reader's Guide to Periodical Literature and in several specialized indexes. The American Association for the Advancement of Science was founded in 1848 and incorporated in 1874. Its objects are to further the work of scientists, to facilitate cooperation among them, to foster scientific freedom and responsibility, to improve the effectiveness of science in promoting public understanding and appreciation of the importance and promise of the methods of science in human progress.
Environmental Trends in Extinction During the Paleozoic: J. J. Sepkoski, Jr.

Delayed Transneuronal Death of Substantia Nigra Neurons Prevented by γ-Aminobutyric Acid Agonist: M. Saji and D. J. Reis

Decreased Hippocampal Inhibition and a Selective Loss of Interneurons in Experimental Epilepsy: R. S. Sloviter

Mapping the Main Immunogenic Region and Toxin-Binding Site of the Nicotinic Acetylcholine Receptor: T. Barkas, A. Mauron, B. Roth, C. Alliod, S. J. Tzartos, M. Ballivet

Increased Numbers of Ion Channels Promoted by an Intracellular Second Messenger: R. Gunning

Cloned Gene of Rickettsia rickettsii Surface Antigen: Candidate Vaccine for Rocky Mountain Spotted Fever: G. A. McDonald, R. L. Anacker, K. Garjian

Unique Forms of the abl Tyrosine Kinase Distinguish Ph1-Positive CML from Ph1-Positive ALL: S. S. Clark, J. McLaughlin, W. M. Crist, R. Champlin, O. N. Witte

Bacteria: Link or Sink?: E. B. Sherr, B. F. Sherr, L. J. Albright; H. W. Ducklow, D. A. Purdie, P. J. LeB. Williams, J. M. Davies

1986 Election Results ■ Transcripts of Discussion Focusing on the Use of Animals in Research Offered ■ Nomination of AAAS Fellows Invited ■ SWARM to Meet in Austin ■ 1987 Calendar of Scientific Meetings Available

Colloidal Gold Probes ■ Statistical Software ■ DNA Sequencing Apparatus ■ Expandable Analyzer ■ Automatic Peptide Synthesizer ■ Technical Word Processing Software ■ Literature
Materials Research

"...When as a debtor nation we must compete vastly better against the products and innovations of a smartening world, it is wise to review our progress in materials science and engineering." This is a quotation from William O. Baker, former chairman of the Board at AT&T Bell Laboratories. The occasion was a conference in October 1985 to commemorate the 25th anniversary of the Materials Research Laboratories. Participants in the conference included a distinguished cross section of industrial, governmental, and academic experts on materials science and applications. The proceedings, recently issued, include historical perspectives, status of scientific and technical areas, and policy matters. The major fraction of the symposium volume consists of essays on frontier topics in materials science. These provide an interesting sample of recent advances, together with some tutorial essays. I found the chapters on metallurgical research, condensed matter physics, catalysis, and organic polymers particularly informative.

At the conclusion of World War II and for more than a decade thereafter, the United States enjoyed a novel position in commercial competition. West Germany, Japan, and most other developed countries were preoccupied with recovering from damage of the war. During the war, the United States had experienced great success in converting scientific knowledge into technology and important practical applications. From 1946 into the early 1970s, U.S. industrial research and development flourished and were world dominating. Particularly impressive were discoveries in materials science and the creation of such practical items as computers and polymers. Our major industrial laboratories conducted basic research, and they skillfully used interdisciplinary teams to exploit it.

Already in the late 1950s, it was evident that excellence in materials science was going to be crucial to the nation's future defense and commercial competition. Leaders such as John von Neumann, Frederick Seitz, and William O. Baker recognized the need to encourage interdisciplinary materials research at universities. In 1960, the Advanced Research Projects Agency initiated a program, Interdisciplinary Laboratories, designed to foster work in materials science. Later, in 1972, the National Science Foundation assumed responsibility for the program which was renamed Materials Research Laboratories.

In comparison with the true needs and opportunities, the Interdisciplinary Laboratories and their successor have had only a moderate impact. In part this is due to limited financial support—on the order of $20 million per year—a tiny sum compared to industrial R&D. At maximum, 12 universities were included, and the professional staffs numbered 600 faculty members. Recently, this number has been around 400. On the positive side, some 3000 Ph.D.'s have been granted. Two precedents have been established: the program has been supported by block grants, thus avoiding micro-management from Washington; the practice of other interdisciplinary efforts on campus has been fostered. Activity in materials research was slow in maturing. Peer pressure, the university departmental structure, and the quest for tenure and promotions caused many faculty to shun interdisciplinary research. Industrial managers have also often complained of the paucity of faculty activity in polymers and inorganic chemistry, fields that have come to have enormous practical applications while displaying interesting scientific phenomena.

The economic situation in 1986 was far different from that in 1960. Most companies feel pressed by foreign competition and, if anything, are cutting back on fundamental research. They are looking increasingly to the universities for inspiration and new knowledge. A significant recent development is the emergence of a vital Materials Research Society. This group organizes an important set of meetings characterized by enthusiastic interaction among peers. Other factors inhibiting university materials science efforts could be (and are being) overcome by university administrators.

Because modern equipment is costly, not every university can engage in materials research. Those that do will share a tremendous responsibility for enabling this country to compete in the many products that are part of our daily lives.—Philip H. Abelson