The ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE

371 This Week in Science

Editorial

373 New Technologies in the Generation of Electricity

Letters

375 Moratorium Ended: S. Baumberg, M. E. Gottesman, C. Yanofsky, M. Yudkin ■ The Ethics of Biotechnology: M. Kenney, I. Feller ■ Arms Control: R. Cook

Association Affairs

377 Alvin W. Trivelpiece: AAAS Executive Officer: C. M. Suskind

News & Comment

378 Missile Pact Edges Closer
380 GAO Report Angers Cancer Officials
381 EPA Indicts Formaldehyde, 7 Years Later
382 How to Ask About Sex and Get Honest Answers
383 Test Ban Compliance: Is Seismology Enough? ■ Seismic Politics
386 Report Blasts Human Development Office

Research News

387 Briefing: White Reellected Head of Engineering Academy ■ Goldberger to Head Princeton Institute ■ U.S.-U.S.S.R. Space Agreement Renewed

Articles

397 New Directions in the Relation Between Public and Private Debt: B. M. Friedman
403 Catalysis: New Perspectives from Surface Science: D. W. Goodman and J. E. Houston

Research Articles

410 Neurogenetic Adaptive Mechanisms in Alcoholism: C. R. Cloninger

Reports

416 Direct Evidence for DNA Bending at the Lambda Replication Origin: K. Zahn and F. R. Blattner

423 Glucocorticoid Receptor Mutants That Define a Small Region Sufficient for Enhancer Activation: R. Miesfeld, P. J. Godowski, B. A. Maler, K. R. Yamamoto

427 Ice-Edge Eddies in the Fram Strait Marginal Ice Zone: O. M. Johannessen, J. A. Johannessen, E. Svendsen, R. A. Shuchman, W. J. Campbell, E. Jøsbergen

SCIENCE is published weekly on Friday, except the last week in December, and with an extra issue in February by the American Association for the Advancement of Science, 1333 H Street, NW, Washington, DC 20005. Second-class postage (publication No. 484462) paid at Washington, DC, and at an additional entry. Copyright © 1987 by the American Association for the Advancement of Science. The title SCIENCE is a registered trademark of the AAAS. Domestic individual membership and subscription (51 issues): $65. Domestic institutional subscription (51 issues): $85. Foreign postage extra: Canada $35, other (surface mail) $77, all-surface via Airspeed Mail $65. First class, airmail, and student rates on request. Single copies $2.50 ($3 by mail); back issues $4 ($4.50 by mail); Information Bending and Biotecnology, $5.50 ($6 by mail); classroom rates on request; Guide to Biotechnology Products and Instruments $15 ($17 by mail). Change of address: allow 6 weeks, giving old and new addresses and seven-digit account number. Authorization to photocopy material for internal or personal use under circumstances not falling within the fair use provisions of the Copyright Act is granted by AAAS to libraries and others registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the base fee of $1 per copy plus $.10 per page is paid directly to CCC, 21 Congress Street, Salem, Massachusetts 01970. The identification code for Science is 0036-8075/87 $1 + .10. Postmasters: Send Form 3579 to Science, 1333 H Street, NW, Washington, DC 20005. Science is indexed in the Reader's Guide to Periodical Literature and in several specialized indexes.

The American Association for the Advancement of Science was founded in 1848 and incorporated in 1874. Its objects are to further the work of scientists, to facilitate cooperation among them, to foster scientific freedom and responsibility, to improve the effectiveness of science in the promotion of human welfare, and to increase public understanding and appreciation of the importance and promise of the methods of science in human progress.

368 SCIENCE, VOL. 236
The smallest gold-conjugated antibody label yet developed is demonstrated in this pseudocolored electron micrograph. Anti-ferritin Fab antibody fragments are covalently linked to 11 gold atom clusters (yellow spots, discerned by high pass filtration) and attached to ferritin, which consists of a protein shell surrounding an iron core (red) \((7\times10^6,000)\). See page 450. [J. F. Hainfeld; image analysis by P. S. Furcinitti; photo by M. Rosen, Brookhaven National Laboratory, Upton, NY 11973]

435 Ocean Dynamics and Acoustic Fluctuations in the Fram Strait Marginal Ice Zone: I. Dyk, P. H. Dahl, A. B. Baggeboer, P. N. Mikhalovsky

436 Physical Properties of Sea Ice Discharged from Fram Strait: A. J. Gow and W. B. Tucker III

442 The α Subunit of the GTP Binding Protein Gα Opens Atrial Potassium Channels: J. Codina, A. Yatani, D. Green, A. M. Brown, L. Birnbaumer

450 A Small Gold-Conjugated Antibody Label: Improved Resolution for Electron Microscopy: J. F. Hainfeld

456 Glucocorticoid Receptor–Like Antigen in Lymphoma Cell Membranes: Correlation to Cell Lysis: B. Gametchu

461 Solving Linear Equations: G. W. Stewart; V. Pan and J. H. Reif

474 Atomic Absorption Spectrophotometer ■ Cell Injection, Extraction Apparatus ■ LIMS Software ■ Modular Peristaltic Pump ■ Data Acquisition and Control Peripheral ■ Operating System for Hard Disks ■ Data Acquisition Software ■ Literature
New Technologies in the Generation of Electricity

The electric utilities are in the later phases of a horrendous experience resulting from their choices and scheduling decisions about generating capacity that were made during the 1970s. They chose to build huge plants and were overly optimistic about growth in demand. Their trauma was exacerbated by problems with nuclear reactors and high interest rates during construction and by the need to curtail acid emissions from coal-fired plants. The time required for design, obtaining permits, and construction of 1000-megawatt (MW) and larger units was 8 to 15 years. During 1987 and 1988 most of the plants now under construction will be completed, and with time, excess capacity will disappear, probably to be followed by shortages.

The capacity requirements of the next decade are uncertain, but new technologies have the potential to forestall many future problems, by providing flexibility in the adding of capacity and freedom from pollution. In the new approach, units of the order of 100-MW capacity will be added in times on the order of 2 or 3 years.

A key technological development is a series of combustion turbines that can run reliably for long periods at high temperatures. One version tested by General Electric can operate at 1260°C. The heat from the turbine can be used to make steam to drive another turbine.

The combustion turbines can employ natural gas, fuel oil, or CO + H₂ derived from gasification of coal. The utilities see an opportunity for phased addition of increased generating capacity. The first phase would be the installation of 100-MW gas turbine capacity that would use natural gas and serve for peaking purposes. Later the heat recovery and steam turbine would be added to yield another 100 MW. Finally, were natural gas to become too expensive, coal gasifiers could be installed, leading to a total output of 300 MW. One version of the gasification step has been operated successfully for about 3 years at the Cool Water plant in California. Emissions from the plant are pollution-free. The Cool Water unit employs a Texaco gasifier. Both Dow Chemical and Shell have developed their own versions of gasifiers, and other companies have also been active.

A panel discussion at the 2 April annual meeting of the Gas Research Institute in Chicago cited some of the advantages of the use of natural gas in the generation of electricity. Generating facilities can be constructed rapidly. Capital costs of equipment are small. Siting problems are minimal. The generators can be located close to loads, thus cutting transmission losses. There are no emissions of SO₂. These advantages justify use of a fuel whose cost is greater than coal. A major uncertainty is the long-term price of gas after the gas bubble gets through.

The use of co-generation is a growing phenomenon that may come to have a considerable role. At the panel discussion, William T. McCormick of Consumers Power told of a project being developed at Midland, Michigan. There, gas turbines will be used to generate 1300 MW of electricity. Low-temperature heat will be delivered to Dow Chemical to be used in chemical processing. Vendors have guaranteed on-line availability of 85 to 90 percent, which is much better than that of the usual power plant. Overall thermal efficiency will be 43 percent. Were new turbines available that are currently being tested the efficiency would be 47 percent. Many coal-fired power plants operate in the low 30s. Co-generation is likely to have increasing applications in commercial establishments where both electricity and heat are required. Again, high thermal efficiencies can be attained. As an alternative to turbines, electricity can be generated and heat recovered from natural gas by means of fuel cells. This is a technology recently developed under sponsorship of the Gas Research Institute.

There is no question about the versatility of natural gas as an energy source and its potential role in the generation of electricity, the principal question for the future is its price and the quantities available. Present spot prices of about $1.50 per million BTUs discourage exploration and drilling.