503 This Week in Science

Editorial
505 Sequencing the Human Genome

Letters
507 Women in Science: E. F. KELLER ♦ Adolescence and Mental Illness: I. FEINBERG ♦ Bibliographic Databases: T. ROBINSON

News & Comment
509 Doubt Cast on Laser Weapons
510 Frederickson Takes Leave from Hughes
511 California Field Test Goes Forward
512 U.K. Science: Survival of the Fittest—or Fattest?
514 Security Council Blocks NSF Grant to IIASA
515 Plutonium by the Ton
516 Briefing: NAS Hopes to Save Issues ♦ MIT Gets $3 Million for News Fellowships

Research News
517 Clinical Promise with New Hormones
519 On the Benefits of Being Eaten
521 Statistical Traps Lurk in the Fossil Record

Articles
537 Decision-Making in the Presence of Risk: M. J. MACHINA
551 The Basis for the Immunoregulatory Role of Macrophages and Other Accessory Cells: E. R. UNANUE and P. M. ALLEN

Research Articles
558 Assembly of Clathrin-Coated Pits onto Purified Plasma Membranes: M. S. MOORE, D. T. MAHAFFEY, F. M. BRODSKY, R. G. W. ANDERSON

Reports
568 On the Prevalence of Room-Temperature Protein Phosphorescence: J. M. VANDERKOOI, D. B. CALHOUN, S. W. ENGLANDER
570 Mitogens and Oncogenes Can Block the Induction of Specific Voltage-Gated Ion Channels: J. M. CAFFREY, A. M. BROWN, M. D. SCHNEIDER
573 Clustering of Genes Dispensable for Growth in Culture in the S Component of the HSV-1 Genome: R. LONGNECKER and B. ROIZMAN

SCIENCE is published weekly on Friday, except the last week in December, and with an extra issue in February by the American Association for the Advancement of Science, 1333 H Street, NW, Washington, DC 20005. Second-class postage (publication No. 484460) paid at Washington, DC, and at an additional entry. Now combined with The Scientific Monthly's Copyright © 1987 by the American Association for the Advancement of Science. The title SCIENCE is a registered trademark of the AAAS. Domestic individual membership and subscription (51 issues): $65. Domestic institutional subscription (51 issues): $98. Foreign postage extra: Canada $32, other (surface mail) $27, air-surface via Amsterdam $65. First class, airmail, school-year, and student rates on request. Single copies $2.50 ($3 by mail); back issues $4 ($4.50 by mail); Biotechnology issue, $5.50 ($6 by mail); classroom rates on request; Guide to Biotechnology Products and Instruments $16 ($17 by mail). Change of address: allow 6 weeks, giving old and new addresses and seven-digit account number. Authorization to photocopy material for internal or personal use under circumstances not falling within the fair use provisions of the Copyright Act is granted by AAAS to libraries and other users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the base fee of $1 per copy plus $0.15 per page is paid directly to CCC, 21 Congress Street, Salem, Massachusetts 01970. The identification code for Science is 0036-8075/83 $1 + .10. Postmaster: Send Form 4839 to Science, 1333 H Street, NW, Washington, DC 20005. Science is indexed in the Reader’s Guide to Periodical Literature and in several specialized indexes. This Week in Science. The American Association for the Advancement of Science was founded in 1848 and incorporated in 1874. Its objects are to further the work of scientists, to facilitate cooperation among them, to foster scientific freedom and responsibility, to improve the effectiveness of science in the promotion of human welfare, and to increase public understanding and appreciation of the importance and promise of the methods of science in human progress.
COVER Distribution of human cone photoreceptors revealed by computer reconstruction of a whole mounted retina. Black oval represents optic disk in nasal retina. Warm colors indicate high cone density, and cool colors low cone density. Foveal density (white) is so high it is off scale. Isodensity contours are elongated horizontally and shifted nasally in peripheral retina. See page 579. [Computer graphics and photography by Kenneth R. Sloan, Jr., University of Washington, Seattle, WA 98195]

576 Rapid Identification of Nonessential Genes of Herpes Simplex Virus Type 1 by Tn5 Mutagenesis: P. C. Weber, M. Levine, J. C. Glorioso

582 β1–6 Branching of Asn-Linked Oligosaccharides Is Directly Associated with Metastasis: J. W. Dennis, S. Laferté, C. Waghorne, M. L. Breitman, R. S. Kerbel

586 Insulin Rapidly Increases Diacylglycerol by Activating De Novo Phosphatidic Acid Synthesis: R. V. Fares, T. S. Konda, J. S. Davis, M. L. Standaert, R. J. Pollet, D. R. Cooper

589 Zinc Selectively Blocks the Action of N-Methyl-D-Aspartate on Cortical Neurons: S. Peters, J. Koh, D. W. Choi

595 Asymmetries in Mating Preferences Between Species: Female Swordtails Prefer Heterospecific Males: M. J. Ryan and W. E. Wagner, Jr.

597 Cloning of Complementary DNA for GAP-43, a Neuronal Growth-Related Protein: L. R. Karsch, S.-C. Ng, J. A. Freeman, M. C. Fishman

AAAS News

610 Project on Liberal Education and the Sciences Receives Funding: B. G. Walthall

Book Reviews

617 Gene Banks and the World's Food, reviewed by W. L. Brown

Products & Materials

621 Centrifuge for Cell Culture ■ Cold Stage for SEM ■ Low-Grain, High-Speed Film ■ Molecule-Drawing Software ■ Remote Sensing for PCs ■ Disposable Microplate Sections ■ Titrator ■ Literature
Sequencing the Human Genome

A molecular biologist might say, “The proper study of mankind is the bacterium.” The developmental biologist would say, “The proper study of mankind is the fruit fly.” The cancer expert says, “The proper study of mankind is the rat.” The poet said, “The proper study of mankind is man.” All are, of course, partly right and partly wrong. The universality of the genetic code and of metabolic systems means that very different forms of life reveal principles and facts that are relevant to human health and illness. Although each species is interesting in itself, the major reason that research in other species is so strongly supported by Congress is its applicability to human beings. Therefore, the obvious answer as to whether the human genome should be sequenced is, “Yes. Why do you ask?”

The more pertinent question about sequencing is how fast and how much. Major portions of the human genome will be uncovered in bits and pieces with laboratories operating in conventional ways. Yet this sequencing is being done inefficiently because each laboratory must learn the methods, develop its own cloning libraries, and operate with techniques and equipment that could be vastly improved. A massive assault—developing new techniques, creating systematic libraries, coordinating data—would inevitably produce the answer sooner. Large segments of repetitive and “junk” DNA, which may have little use according to current concepts, would be sequenced, but even so the gains in new techniques would more than compensate for the delays of uninteresting stretches.

The next question is who should do the job. The National Institutes of Health has funded most of the scientists who have made the project possible, but it would be in danger of a Big Science—Little Science conflict. The Department of Energy has only a few scientists in the proper leadership area, but has had experience with large projects and offers a political arrangement that could ensure that the program is an add-on, not a subtraction from Little Science.

For this project to command the respect and support of the biological community, acknowledged experts are needed on the governing board of the project. (A National Academy of Sciences committee now studying the whole problem is a blue-ribbon list for selection of such a board.) The program and individual grant requests should be peer reviewed continuously, following the excellent procedures of NIH and the National Science Foundation. Leaders from NIH, NSF, the Howard Hughes Medical Institute, and foreign scientists should play prominent roles in the organization. A DOE program should be expected to use national laboratory personnel for some of the work but to act more as a nerve center, both monitoring and administering a large number of smaller grants to investigators located all over the world. This effort should be international with contributions from different countries in terms of grants, investigators, and leadership advice. A plan in which DOE recognizes the importance of peer review and decentralized administration would thus be a compromise, but it would ensure proper quality and avoid a budget situation that placed Big Science and Little Science in dangerously direct financial competition. An alternative would be to try to set up within NIH a special institute for sequencing. Political memories are short, however, and soon that allocation would be thought of as “NIH funds,” creating the unwanted competition between “big” applied and “little” investigator-initiated research. It would appear that DOE could find the leadership excellence more easily than NIH could provide the budgetary insulation.

The implications of sequencing the human genome are staggering. The recent discoveries of genes identified with muscular dystrophy, manic depression, cystic fibrosis, and Alzheimer’s disease are illustrative aspects of the potential. Human subjects have been a source of information, medically, psychologically, and evolutionarily for centuries. They offer a wealth of information in regard to basic biology that is not duplicated by any other species. Hereditary defects may be able to be diagnosed more efficiently and eventually eliminated. Moreover, developing the successful methodology for sequencing the human genome means that understanding other species will also be accelerated. The opportunities are enormous. We have been “walking along the chromosomes” long enough. It is time to start running. —DANIEL E. KOSHLAND, JR.