1155 This Week in Science

Editorial

1157 Frontiers in Recombinant DNA

Letters

Policy Forum

1165 Are Our Universities Rotten at the “Core”?: F. H. WESTHEIMER

News & Comment

1176 Science and the Space Station
1179 Mixed Views on Biotech
1180 Another Plea for Agricultural R&D Glasnost and the Soviet Environment
1181 Briefing: Time Inc. Sells Discover ■ Fredrickson Resigns From Hughes Institute ■ NIH Dedicates Museum to DeWitt Stetten ■ Issues to Continue ■ Vandals Hit Lindow Plot

Research News

1182 Halocarbons Linked to Ozone Hole
1183 Anthropologists Turn Advocates for the Brazilian Indians
1187 The T Cell Receptor Family Is Growing
1189 IBM Superconductor Leaps Current Hurdle

Articles

1223 Disease Diagnosis by Recombinant DNA Methods: C. T. CASKEY
1229 The Human Hematopoietic Colony-Stimulating Factors: S. C. CLARK AND R. KAMEN
1237 Regulation of Inducible and Tissue-Specific Gene Expression: T. MANIATIS, S. GOODBOURN, J. A. FISCHER
1245 Homeo Boxes in the Study of Development: W. J. GEHRING
1252 Tinkering with Enzymes: What Are We Learning?: J. R. KNOWLES
1259 Gene Transfer in Cereals: E. C. COCKING AND M. R. DAVEY

Reports

1287 Magnetic Properties of Hydrothermally Recrystallized Magnetite Crystals: F. HEIDER, D. J. DUNLOP, N. SUGIURA
1290 Expression of Functional Cell-Cell Channels from Cloned Rat Liver Gap Junction Complementary DNA: G. Dahl, T. Miller, D. Paul, R. Voellmy, R. Werner
1293 Selective Inactivation of Influenza C Esterase: A Probe for Detecting 9-O-Acetylated Sialic Acids: E. A. Muchmore and A. Varki
1295 Regulation of \(b d-2 \) Proto-Oncogene Expression During Normal Human Lymphocyte Proliferation: J. C. Reed, Y. Tsujimoto, J. D. Alpers, C. M. Croce, P. C. Nowell
1299 Duplication of CaMV 35S Promoter Sequences Creates a Strong Enhancer for Plant Genes: R. Kay, A. Chan, M. Daly, J. McPherson
1302 Propagation in Cell Culture of the Dinoflagellate \(Amyloiodinium \), an Ectoparasite of Marine Fishes: E. J. Noga
1305 Derivation of Clones Close to \(met \) by Preparative Field Inversion Gel Electrophoresis: F. Michiels, M. Burmeister, H. Lehraeh
1311 The Dynamics of Free Calcium in Dendritic Spines in Response to Repetitive Synaptic Input: E. Gamble and C. Koch
1315 The Role of Individual Cysteine Residues in the Structure and Function of the \(\nu\)-sis Gene Product: N. A. Giese, K. C. Robbins, S. A. Aaronson

AAAS News

Book Reviews

1357 Scientific Discovery, reviewed by J. D. Sneed ○ RCA and the VideoDisc, E. A. Blackstone ○ Managing Nuclear Operations and Nuclear Crisis Management, J. Richelson ○ Fraser Darling's Islands, P. Marler ○ Reprints of Books Previously Reviewed ○ Books Received

Products & Materials

1361 Automated Sample Preparation Workstation ○ Software for Solving Differential Equations ○ Preparative System for Proteins ○ Autoclave Indicators ○ Equations with Any Word Processing Software ○ Protein Sequencing Instrument ○ Literature

5 June 1987

TABLE OF CONTENTS
Frontiers in Recombinant DNA

A cartoon in the New Yorker shows an aristocratic dowager in a Chippendale chair looking up from her newspaper and saying to her patrician-looking husband, “Dear, are they tampering with our genes?” Such vague worry that the young Turks of DNA may not only inadvertently create pestilence, war, and famine but may even invade the regions of good taste is prevalent in the general public. To the cognoscenti these worries are remote but not absurd; yet they rush on. If there is even the remotest chance of some misuse, should one not slow down and proceed with great caution?

The answer is that, in fact, fuller understanding of the DNA methods has revealed the areas in which caution must be applied as well as the power of this research tool. The sweep of subjects in which recombinant DNA has provided breakthroughs is incredible. In this issue a few of many examples are selected to show how it has been applied to the understanding of learning, development, diagnosis of disease, stimulation of colony growth, generation of new plant foods, design of new catalysts, and the mixing on of genes and viruses. Although the applications described here relate to these fundamental biological processes, the potential for practical applications is clear.

Maniatis et al. describe a research area that has moved with lightning speed, but still leaves many mysteries. The role of promoters and enhancers in turning on and turning off gene expression and the apparent crazy quilt pattern of upstream and downstream elements could never have been unraveled by classical genetics. Gehring illuminates a phenomenon that was initially revealed by classical genetics: the homeotic genes, mutations in which cause legs to grow out of the heads of flies. By recombinant DNA studies the homeo gene has led to new understanding of morphological development. Cocking and Davey describe the breach of a new barrier—the cereals—previously resistant to the techniques that allowed genetic engineering of other types of plants. Clark and Kamen discuss the application of recombinant DNA techniques to the elusive elements that stimulate cell growth, the colony-stimulating factors. Caskey outlines recombinant DNA procedures that can lead to the identification of molecular defects accounting for heritable diseases and acquired neoplasia in Homo sapiens, and Black et al. describe the application to one of the most difficult experimental challenges, the understanding of the molecular events in learning and memory.

Knowles tells of the application of genetic engineering to the vital catalysts that control all dynamic biological processes—the enzymes.

The intellectual excitement of rapid progress in some of the most vital problems in biology is, by itself, an enormous stimulus; but in each case practical applications are almost at hand. The prospect of an age of designer catalysts, of quick medical diagnosis of genetic defects, of new cereals for starving millions, and of brain therapy in neurological diseases is another spur to progress in these already rapidly advancing areas.

Biologists asked for a moratorium to assess risks in the initial days of recombinant DNA. How is it, that now the tools appear to be more powerful than was expected then, that there can be confidence that these experiments no longer threaten humankind? The answer has two parts. First, much is now known about the events that lead to uncontrolled growth of cells and about the safe application of recombinant DNA. Second, experiments have revealed that genetic engineering has been occurring in nature for eons without catastrophic consequences. Recombination in vivo results in events such as attachment of the hind end of one protein to the front end of another. Nature’s genetic engineering through selection is much slower than modern laboratory manipulation, but it has been going on for billions of years. That fact can not only induce some humility in molecular biologists but also ease some fears of onlookers.

Ecological and moral dilemmas created by these new technologies are appreciable and will require new ideas. Tampering with the mind is generally considered to be bad, but should genetic engineering to alleviate Alzheimer’s disease be outlawed? To feed starving populations is desirable, but if new crops help add a billion people to a crowded globe, is that necessarily good? The powerful new methods are here. Applying them may well require the use of brain enhancers.—DANIEL E. KOSHLAND, JR.