873 This Week in Science

Editorial

875 Continuing Education for Blue-Collar Workers

Letters

877 NRC Report on the Space Station: L. H. Meredith; A. M. Mood ■ Mass Bleachings on Atlantic Coral Reefs: E. H. Williams, Jr., C. Goenaga, V. Vicente ■ Oil and Gas Discovery Rates: C. J. Cleveland; C. M. Blair, Jr.; W. L. Fisher

News & Comment

880 Animal Regulations: So Far, So Good
882 Duke's Heart Center in Bureaucratic Jam
883 SDI Experts Clash on Nuclear Satellites
884 New Questions About AIDS Test Accuracy
886 DOD Sees Risks in Plutonium Trade — A Plea to Close Defense Reactors
887 Networks Nix Contraceptives Ad

Research News

888 Imaging Technique Passes Muster
890 Old and New Geology Meet in Phoenix ■ Ancient Air Analyzed in Dinosaur-Age Amber ■ Present at the Birth of an Ore Deposit ■ Seeing Bright Spots in the Middle Crust
892 NIH Celebrates 100 ■ Patterns and Processes Mark Brain Activity ■ Molecular Events Guide Embryonic Development
894 The Large-Scale Structure of the Universe Gets Larger—Maybe

Articles

915 The Recent Decline of Unionization in the United States: H. S. Farber
926 Exchange of Material Between Terrestrial Ecosystems and the Atmosphere: H. A. Mooney, P. M. Vitousek, P. A. Matson

Research Articles

933 Structurally Distinct, Stage-Specific Ribosomes Occur in *Plasmodium*: J. H. Gunderson, M. L. Sogin, G. Wollett, M. Hollingdale, V. F. de la Cruz, A. P. Waters, T. F. McCutchan
cover Portion of an ear of corn showing the kernel phenotype obtained when the transposable element Sm excises from the opaque-2 locus during the course of endosperm development. Opaque-2 is a transacting regulator of seed storage protein expression. The opaque-mutable phenotype constitutes sectors of normal endosperm on an otherwise opaque (mutant) kernel. See page 960. [J. Schmidt, Brookhaven National Laboratory, Upton, NY 11973]

Reports

938 When Will a Pulsar in Supernova 1987a Be Seen?: F. C. Michel, C. F. Kennel, W. A. Fowler
940 A Substantial Bias in Nonparametric Tests for Periodicity in Geophysical Data: S. M. Stigler and M. J. Wagner
945 Atmospheric Trends in Methylchloroform and the Global Average for the Hydroxyl Radical: R. Prinn, D. Cunnold, R. Rasmussen, P. Simmonds, F. Alyea, A. Crawford, P. Fraser, R. Rosen
956 Environmental Correlates of Food Chain Length: F. Briand and J. E. Cohen
960 Transposon Tagging and Molecular Analysis of the Maize Regulatory Locus opaque-2: R. J. Schmidt, F. A. Burr, B. Burr
964 Unwinding of Duplex DNA from the SV40 Origin of Replication by T Antigen: M. Dodson, F. B. Dean, P. Bullock, H. Echols, J. Hurwitz

Book Reviews

969 Genetics in the Courts, reviewed by S. L. Carter ■ Experimental Approaches to Mammalian Embryonic Development, J. J. Eppig ■ High Energy Phenomena Around Collapsed Stars, F. Melia ■ The Natural History of Badgers, M. Hancox ■ Books Received

Products & Materials

985 Repeating Step-Dispenser ■ mAb Electrophoresis System ■ Modular Statistical Software ■ Infrared Carbon Dioxide Incubator ■ Bibliographic Database ■ 80386-Based Portable Computer ■ Chemical Kinetics Software ■ Literature

Board of Directors

Robert McC. Adams
Floyd E. Bloom
Mary E. Clutter
Mildred S. Dresselhaus
Beatrix A. Hamburg
Donald N. Langenberg
Frank von Hippel
Linda S. Wilson
William T. Golden
Treasurer
Alvin W. Trivelpiece
Executive Officer

Editorial Board

Elizabeth E. Bailey
David Baltimore
William F. Brinkman
Philip E. Converse
Joseph L. Goldstein
James D. Idol, Jr.
Leon Knopoff
Seymour Lipset
Oliver E. Nelson
David V. Ragone
David M. Raup
Vera C. Rubin
Larry L. Smarr
Solomon H. Snyder
Robert M. Solow
James D. Watson

Board of Reviewing Editors

John Abelson
Gats Al-Awadi
James P. Allison
Don L. Anderson
Elizabeth H. Blackburn
Floyd E. Bloom
Charles R. Cantor
Ralph J. Ciosine
James H. Clark
Bruce F. Eldridge
Stanley Fawcett
Theodore H. Geballe
Roger I. M. Glass
Stephen P. Goldf
Robert B. Goldberg

Corey S. Goodman
Stephen J. Gould
Richard M. Heald
Glenna Hespenheide
Eric F. Johnson
Konrad K. Krauskopf
I. Robert Lehman
Karl L. Magleby
Joseph B. Martin
John C. McClaff
Alton Meyer
Mortimer Mishkin
Peter Olson
Gordon H. Orians
Carl D. Pabo
John S. Pearse

Yeshayau Pocker
Jean Paul Revel
James E. Rothman
Thomas C. Schelling
Ronald H. Schwartz
Stephen M. Schwartz
Otte T. Solborg
Robert T. N. Tjian
Virginia Trimble
Gwenn J. Vermeij
Martin G. Weigert
Harold Weintraub
Irving L. Weissman
George M. Whitesides
Owen N. Witte
William B. Wood
Continuing Education for Blue-Collar Workers

The need for continuing education has been intensified for many groups, including blue-collar workers. In the production of manufactured goods, coming changes may prove to be as revolutionary as those that already have occurred in agriculture.

Education and training within corporations of the United States is an important and growing industry. The dollars spent and the numbers of company students trained are comparable to the totals experienced by all the country’s 4-year colleges and universities. A substantial portion of the training efforts of corporations is devoted to upgrading the capabilities of their blue-collar workers. The circumstances under which teaching is conducted vary from company to company, and at different locations in any given company. For the most part, the curricula are dictated by the company to serve company objectives, and the courses are conducted during working hours.

The United Auto Workers and Ford Motor Company have cooperated to create a novel and flexible UAW-Ford Employee Development and Training Program* that merits close attention and possible replication elsewhere. In part this program represents recognition of the need for labor to be more literate and computer knowledgeable if this nation is to compete in the future. The program is also responsive to deeply felt needs for self-improvement on the part of many of the employees. It focuses on the individual interests and goals of the worker, uses customized individual and group guidance materials, and provides networking and partnership of local educational and training organizations.

The two partners, labor and management, have sought the collaboration of the University of Michigan, which employs life-education advisers who have important roles in facilitating educational programs. The advisers are stationed at the various production plants and serve many functions, including friendly counseling. They help employees formulate and implement programs for self-improvement that are geared to the individual’s talents and goals.

In the United States, Ford employs about 100,000 people who are represented by the UAW. They work at more than 70 locations where parts are made, subassemblies are produced, or vehicles are assembled. The previous educational attainments of the employees vary. About 25 percent have not completed high school. Another 60 percent stopped studies after completing high school. About 20 percent have had some college or university experience. Corresponding to this, a diversity of opportunities are available at each level. There are remedial programs for some. There is paid college tuition for others. More than 500 outside college-level institutions are involved. Nearly 100 of them conduct classes within the production plants. The union and the company jointly administer the program for which funds are available. An individual can obtain $2000 in tuition support annually to attend an accredited college or university. Attendance in classes is on the individual’s time, not the company’s. When training is required to meet specific job needs, the instruction is conducted during working hours. The fact that many employees are willing to spend their limited free time on classes and studies is impressive.

Many of the courses chosen by employees add to their literacy, communication skills, or mathematical competence. Courses on computers leading to and including programming are popular, as are courses in robotics. Some of the students choose subjects not directly related to their work, such as public speaking.

In the initial phases of the program, the workers were slow to respond to the educational opportunities. But with the passage of time, favorable testimony by co-worker participants led to increasing numbers of workers joining the program. One said that the program was the best thing that had happened in all his years at Ford. Two other comments of the students follow: “An active and learning mindset seldom faces the problem of senility. Our minds need ‘exercise,’ not just our muscles.” A second comment: “I feel that the better our work force is trained, the better vans we build. When a person starts thinking and learning in the classroom, it doesn’t stop there. It becomes a habit, and you carry it not only to the job but everywhere else.” —PHILIP H. ABEelson

*UAW-Ford National Developmental and Training Center, PO Box 6002, Dearborn, MI 48128.