This Week in Science

Editorial

Soviet Science and Technology at the Boston Meeting: A. W. Trivelpiece

Letters

News & Comment

Soviet Science

Adapting to Pork-Barrel Science

Research News

Atomic Bomb Doses Reassessed

Association Affairs

A Weakness in Process Technology: L. C. Thurow

Articles

Ceramics by the Solution-Sol-Gel Route: R. Roy

Determination of Anteroposterior Polarity in Drosophila: C. Nüssle-Volhard; H. G. Frohnhöfer, Rüth Lehmann

Research Articles

Identification of the Human U7 snRNP as One of Several Factors Involved in the 3' End Maturation of Histone Premessenger RNA's: K. L. Mowry and J. A. Steitz

COVER Image of the core of a crystallographic dislocation in grossular garnet (approximate composition Ca₃Al₂Si₃O₁₂) obtained by high-resolution transmission electron microscopy. The two parallel yellow lines are partial dislocations, separated by a core region of stacking fault. Perfect, unaffected crystal structure surrounds the defect on the outside of the partial dislocations. The width of the fault corresponds to about 6 nanometers, or approximately 5 unit cells of garnet structure. See page 1695. [Computer processing of the image is by P. R. Buseck and A. Rimsy, Laboratoire de Mineralogie-Cristallographie, U.A. 09, Centre National de la Recherche Scientifique, Universités P. M. Curie and Paris, 7, France]

Reports

1695 Direct Observation of Dissociated Dislocations in Garnet: F. M. ALLEN, B. K. SMITH, P. R. BUSCEK

1700 Quantitative Three-Dimensional Optical Tomographic Imaging of Supersonic Flows: G. W. FARIS and R. L. BYER

1702 Was Venus Wet? Deuterium Reconsidered: D. H. GRINSPOON

1704 Blocking of HIV-1 Infectivity by a Soluble, Secreted Form of the CD4 Antigen: D. H. SMITH, R. A. BYRN, S. A. MARSTERS, T. GREGORY, J. E. GROOPMAN, D. J. CAPON

1707 Three-Dimensional Structure of Interleukin-2: B. J. BRANDHUBER, T. BOONE, W. C. KENNEY, D. B. MCKAY

1710 Stimulation of Heterotrophic Microplankton Production by Resuspended Marine Sediments: S. C. WAINRIGHT

1712 Quantal Release of Transmitter Is Not Associated with Channel Opening on the Neuronal Membrane: S. H. YOUNG and I. CHOW

1713 The Structure of Sister Minichromosome DNA Before Anaphase in Saccharomyces cerevisiae: D. KOSHLAND and L. H. HARTWELL

1716 Intracellular Topography of Rhodopsin Bleaching: C. L. MAKINO, L. N. HOWARD, T. P. WILLIAMS

1717 A Novel Putative Tyrosine Kinase Receptor Encoded by the eph Gene: H. HIRAI, Y. MARI, K. HAGIWARA, J. NISHIDA, F. TAKAKU

1720 Sodium-Calcium Exchange in Heart: Membrane Currents and Changes in [Ca2+]i: L. BARCENAS-RIUZ, D. J. BRUCKELLMANN, W. G. WIER

1726 Protein Kinase C Contains a Pseudosubstrate Proteotpe in Its Regulatory Domain: C. HOUSE and B. E. KEMP

Technical Comments

Book Reviews

1738 Domestic Tyranny, reviewed by N. TOMES • Beyond the Laboratory, D. JORAVSKY • Superluminal Radio Sources, D. WILLS • The Retina, R. SHAFELZ • Evolutionary Genetics of Invertebrate Behavior, M. J. WADE • Books Received

Products & Materials

1744 Cell Harvester • Bibliography Software • Scintillation Solutions • Immunoassay for T8 • Scanning Electron Microscope • Chromatographic System • Math Function Software Library • Graphic Workstations • Literature

*Author Index to Volume 238 is found on pages I-X
Information for Contributors is found on pages XI-XII*
Soviet Science and Technology at the Boston Meeting

Much has been written about the Washington summit and the activities surrounding it. More is sure to be written about what it means in terms of world peace, arms control, glasnost, and perestroika. Unfortunately, not much has been written about the importance that the Soviet Union attaches to science and technology as engines of present and future development. The Soviet Union now trains more scientists and engineers than any other country in the world. The Soviets have an outstanding space research and development program and world-class efforts in some areas of basic research, as well as some of the same problems that we do in transforming basic research into practical products. They also have problems with the environment, ecology, and quality control that are not unlike some of those that concern the United States.

Members of the Soviet delegation touched on these and several other subjects in a 3-hour meeting at the National Academy of Sciences on 8 December. What was remarkable about this meeting was the openness and frankness with which the Soviet delegation discussed issues of science, technology, and economic development. The makeup of the Soviet delegation included leaders in science, engineering, economics, and law.

Academician Yevgeni Velikhov pointed out the problems with producing personal computers, the fact that the country needs 1.0 million by 1990 and that one half would go to precollege education programs. Sergei Zalizin discussed how a government plan to divert some northern rivers to the south would have been an environmental and ecological disaster and how the role he played as the editor of Nomy Mir helped in mobilizing a popular effort that stopped the project. I found this even more remarkable than stopping a major water project in the United States on environmental grounds. Academician A. G. Aganbegyan, secretary of the Economics Department, discussed the economic aspects of perestroika and said that Soviet management must change: “It has served as a brake on economic and social development.” He pointed out that this change will cause serious problems of disruption in careers of mid-level managers: “It is not possible to make progress if you don’t touch anyone.”

It is unfortunate that U.S. delegations to summit meetings do not also include a group of leading scientists, engineers, economists, and editors—not as window dressing, not just brought along for the ride, but rather, as an involved, informed group capable of discussing the scientific and technical issues on their merits with their peers and counterparts from the other side. Economics, arms control, and management do not exist as disembodied activities, but influence and, in turn, are influenced by science and technology.

Later, on the same day as the meeting, an eclectic collection of individuals were invited to the Soviet Embassy for a meeting with General Secretary Gorbachev. The group included several scientists and engineers in addition to some 40 authors, actors, religious leaders, and arms control activists. After a brief reception, Gorbachev addressed the group for about 40 minutes, calling attention to Velikhov and the importance of science. This was followed by about a 40-minute discussion period during which most of those who commented praised Gorbachev for his role in perestroika and glasnost. On the basis of my limited observations, I believe that Gorbachev has a good understanding of the role of science and technology play in economic development and that he is going to give increased emphasis to science and technology in his government’s perestroika efforts.

I was pleased to see the emphasis placed on science and technology in some of the activities associated with the summit. I have long felt that the United States would benefit from a better understanding of basic and applied research in the Soviet Union. So about 8 months ago, I invited Velikhov to come to the AAAS Annual Meeting in Boston in February and to bring with him about ten Soviet scientists and engineers to make presentations on Soviet science and technology. Velikhov accepted but, unfortunately, the names of the Soviet speakers and their subjects were not provided in time to be included in the meeting program. A complete listing of the names and titles of the talks will appear later in Science. The AAAS meeting will provide an excellent forum for talks in areas such as biology, chemistry, physics, archeology, genetic engineering, and military-political research by leading Soviet scientists and engineers. I hope that many of you will attend the Boston meeting and participate in what promises to be an interesting event.

—Alvin W. Trivelpiece