639 This Week in Science

Editorial
641 Frontiers in Neuroscience

Letters

News & Comment
657 Random Audit of Papers Proposed
658 Authorship, Data Ownership Examined
659 Stanford Inquiry Casts Doubt on 11 Papers
661 NIH Holds a Science Fair
662 Billion Dollar Price Tag for New Animal Rules
663 The Ecosystem and Human Behavior
664 Basic Science's Skies Brighten in Britain
665 Curbing Soviet Disinformation ■ Bush Discusses Science Policy ■ NAE Creates New Prize ■ Research Resources Merger

Research News
666 The Elusive Replacements for CFCs ■ The Old and the New
668 Subtleties of Mating Competition
669 A Nobel Prize for the Two-Neutrino Experiment
671 Family Relationships Are a Biological Conundrum
672 Membrane Protein Holds Photosynthetic Secrets

Articles

Frontiers in Neuroscience
692 Axon Guidance and the Patterning of Neuronal Projections in Vertebrates: J. Dodd and T. M. Jessell
700 Growth Cone Guidance in Insects: Fasciclin II Is a Member of the Immunoglobulin Superfamily: A. L. Harrelson and C. S. Goodman
708 Neuronal Cytomechanics: The Actin-Based Motility of Growth Cones: S. J Smith
715 Cellular and Molecular Mechanisms of Drug Dependence: G. F. Koob and F. E. Bloom
724 Long-Term Synaptic Potentiation: T. H. Brown, P. F. Chapman, E. W. Kairiss, C. L. Keenan
728 The Neural Basis for Learning of Simple Motor Skills: S. G. Lisberger

SCIENCE is published weekly on Friday, except the last week in December, and with an extra issue in February by the American Association for the Advancement of Science, 1333 H Street, NW, Washington, DC 20005. Second-class postage (publication No. 484460) paid at Washington, DC, and at an additional entry. Copyright © 1988 by the American Association for the Advancement of Science. The title SCIENCE is a registered trademark of the AAAS. Domestic individual membership and subscription (51 issues): $70. Domestic institutional subscription (51 issues): $110. Foreign postage extra: Canada $32, other (surface mail) $32, air-surface via Amsterdam $85. First class, airmail, school-year, and student rates on request. Single copies $3.00; back issues $5.00; Biotechnology issue, $5.50 ($6 by mail); classroom rates on request; Guide to Biotechnology Products and Instruments $16 ($17 by mail). Change of address: allow 6 weeks, giving old and new addresses and seven-digit account number. Authorization to photocopy material for internal or personal use under circumstances not falling within the fair use provisions of the Copyright Act is granted by AAAS to libraries and other users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the base fee of $1 per copy plus $.10 per page is paid directly to CCC, 21 Congress Street, Salem, Massachusetts 01970. The identification code for Science is 0036-8075/83 $1 + .10. Postmaster: Send Form 3579 to Science, 1333 H Street, NW, Washington, DC 20005. Science is indexed in the Reader's Guide to Periodical Literature and in several specialized indexes.

The American Association for the Advancement of Science was founded in 1848 and incorporated in 1874. Its objects are to further the work of scientists, to facilitate cooperation among them, to foster scientific freedom and responsibility, to improve the effectiveness of science in the promotion of human welfare, and to increase public understanding and appreciation of the importance and promise of the methods of science in human progress.
COVER False color map of intracellular calcium concentration in a guinea pig cerebellar Purkinje cell at the onset of a wave of complex spike activity. A high calcium concentration is observed in the distal dendritic tree. The map was produced from microfluorometric imaging of the fluorescent calcium indicator fura-2. See page 773. [D. W. Tank and J. A. Connor, Molecular Biophysics Research Department, AT&T Bell Laboratories, Murray Hill, NJ 07974; M. Sugimori and R. R. Llinás, Department of Physiology and Biophysics, New York University School of Medicine, New York, NY 10016]

736 Behavioral Neurophysiology: Insights into Seeing and Grasping: S. P. Wise and R. Desimone
741 Perspectives on Cognitive Neuroscience: P. S. Churchland and T. J. Sejnowski

Reports

746 Arctic Ocean Ventilation Studied with a Suite of Anthropogenic Halocarbon Tracers: M. Krysell and D. W. R. Wallace
749 Thermodynamic Efficiency of Bristle Frictional Mountain Building: T. D. Barr and F. A. Dahlen
752 Reductive Dechlorination of Polychlorinated Biphenyls by Anaerobic Microorganisms from Sediments: J. F. Quensen III, J. M. Tiedje, S. A. Boyd
759 The Effect of Histone Gene Deletions on Chromatin Structure in Saccharomyces cerevisiae: D. Norris, B. Dunn, M. A. Osley
762 A Merchansensitive Ion Channel in the Yeast Plasma Membrane: M. C. Gustin, X.-L. Zhou, B. Martinac, C. Kung
765 Anticodon Switching Changes the Identity of Methionine and Valine Transfer RNAs: L. H. Schultman and H. Pelka
771 Brain Stem Neurons in Modified Pathways for Motor Learning in the Primate Vestibulo-Ocular Reflex: S. G. Lisberger and T. A. Pavelko
777 Growth and Transparency in the Lens, an Epithelial Tissue, Stimulated by Pulse of PDGF: B. Bre Witt and J. I. Clark

Book Reviews

784 Seventy-Five Years in Ecology, reviewed by, L. B. Slobodkin ▪ Racial Hygiene, R. A. Foix ▪ Ubiquitin, H. T. Smith ▪ Books Received

Products & Materials

789 Refrigerated Benchtop Centrifuge ▪ Immunoenzymatic Staining Kits ▪ mRNA Isolation Kit ▪ Mouse Immunoglobulin Identification Kit ▪ Image-Processing Software ▪ Spectrophotometer ▪ Literature

Table of Contents
Frontiers in Neuroscience

The human brain contains about 10^{12} neurons, many of which have more than 10,000 connections with other neurons. This incredibly sophisticated supercomputer presents an enormous intellectual challenge. Elucidating its function will be of great importance to the understanding of human behavior and the support of mental health. In this issue, assembled with the expertise of Katrina Kelner, eight articles cover selected aspects of modern neurobiology and illustrate the power of new concepts and new experimental tools.

Memory is of course one of the most intriguing areas of study in the brain, and describing the physiological changes in neurons that generate long-term memory is a first step in understanding all subsequent learning processes. Major developments in this area are discussed by Brown and co-workers, who have used the technique of long-term potentiation, that is, a long-lasting change in a neuron as a result of repetitive stimulation. Indications of Hebbian feedback behavior in these stimulated neurons combine modern molecular biology with classical postulates of psychology.

Learning also involves complex motor patterns such as hitting a baseball moving at 150 kilometers per hour. This action requires the training of motor skills so that a rudimentary native ability is converted to a more precise learned ability, as described by Lisberger. Moreover, as discussed by Wise and Desimone, correlation of movements with visual stimuli requires groups of neurons that can select objects and also constantly adjust to the fact that limbs grow, muscle mass changes, and visual experience accumulates.

How neurons make connections to develop the complex wiring diagram of the brain is discussed in three papers. To the dismay of some who may like to think that humans are appreciably more worthy than insects, the development of neuronal interconnections in a grasshopper is not so different from that of so-called higher species. It appears that neurons making distant connections follow predetermined pathways by groping along structural elements that contain molecular signposts in the form of proteins on the surface of cells. They also may use chemical gradients that attract or repel the advancing tip of the neuron, the growth cone. Moreover, these extensions have feedback mechanisms that allow them to withdraw from incorrect surfaces and fasten tightly to the correct ones. Dodd and Jessell focus on vertebrate glycoproteins that provide a guidance system in nonspecific parts of the developing neuron and discuss axon guidance by contact inhibition. Harrelson and Goodman discuss the same subject with emphasis on fasciculation in invertebrates, particularly as mediated by fasciclin II, a member of the immunoglobulin superfamily. These immunoglobulin-like molecules are structurally homologous to guidance molecules in the vertebrate nervous system. Finally, Smith discusses the mechanics of cell motility during neuron development and identifies actin polymerization as the force behind the protrusion of the growth cone while the actin–myosin system, fueled by adenosine triphosphate, appears to drive growth cone retraction.

Koob and Bloom discuss the currently prominent issue of drug dependence from the molecular point of view. The drug problem will not be solved solely by elucidating the biochemical mechanisms, but understanding the molecular basis of tolerance and withdrawal will help. Such findings may also help explain why people become addicted to drugs and lead to the development of better procedures for detoxification.

Churchland and Sejnowski consider some aspects of theoretical computer programs that show computation patterns analogous to those of the brain. Some experimenters regard such theoretical programming as being of much practical use in understanding brain function. Nevertheless, there are principles applied in algorithms that are functionally similar to mechanisms in the human brain. In fact, insight into new types of information processing is leading to an entire industry in which the simulation of neuronal activity in an algorithm is being used to attract venture capital. The brain is becoming big business, as well as a big intellectual challenge.

Sometimes intellectual challenges are fascinating but of debatable value such as the design of new weapons or the breaking of secret codes. Understanding the brain is a monumental puzzle, the solution of which can provide great humanitarian advances. This issue presents some beginnings at unraveling that Gordian knot.

—Daniel E. Koshyland, Jr.