1023 This Week in Science

Editorial
1025 Teaching Statistics to Engineers: A. PENZIAS

Letters

News & Comment
1033 DNA Typing in the Witness Stand ■ Three-Pronged Test for DNA
1036 Academy Panel Joins the Fray Over Job Testing
1037 Consorting on Superconductors
1038 Superpay for NIH Superstars
Fraud and the “Glare of the TV Camera”
Hughes Makes Awards to University Science

Research News
1039 Cold Fusion: End of Act I
1041 Hansen vs. the World on the Greenhouse Threat ■ Greenhouse Models vs. Reality
1044 NASA Flight Controllers Become AI Pioneers ■ AI Is the Able Assistant

Articles
1046 Experimental Research on Jury Decision-Making: R. J. MACCOUN
1050 The Heliosphere as an Astrophysical Laboratory for Particle Acceleration:
 T. TERASAWA AND M. SCHOLER

Research Articles
1057 Ectopic Expression of the Serotonin 1c Receptor and the Triggering of Malignant Transformation: D. JULIUS, T. J. LIVELLI, T. M. JESSELL, R. AXEL

Reports
1063 Images of the DNA Double Helix in Water: S. M. LINDSAY,
 T. THUNDAT, L. NAGAHARA, U. KNIPPING, R. L. RILL
1064 Mammal-Like Dentition in a Mesozoic Crocodylian: J. M. CLARK, L. L. JACOBS,
 W. R. DOWNS
1066 Transfer of a Protein Encoded by a Single Nucleus to Nearby Nuclei in Multinucleated Myotubes: E. RALSTON AND Z. W. HALL
Cover Scanning tunneling microscope images of an uncoated DNA fragment adsorbed on a single-crystal gold surface under water. The image, which has been repeated in a chevron pattern, is 700 Å by 700 Å and is viewed at an angle of about 45° with respect to the surface. The individual 36 Å twists of the helix backbone can be seen. See page 1063. [Photograph courtesy of S. M. Lindsay, Department of Physics, Arizona State University, Tempe, AZ 85287]

1069 Hidden Thermodynamics of Mutant Proteins: A Molecular Dynamics Analysis: J. Gao, K. Kuczensa, B. Tidor, M. Karplus

1072 Brefeldin A. Specifically Inhibits Presentation of Protein Antigens to Cytotoxic T Lymphocytes: J. W. Yewdell and J. R. Bennink

1075 Involvement of a Leukocyte Adhesion Receptor (LFA-1) in HIV-Induced Syncytium Formation: J. E. K. Hildreth and R. J. Orentas

1081 High-Resolution Epitope Mapping of hGH-Receptor Interactions by Alanine-Scanning Mutagenesis: B. C. Cunningham and J. A. Wells

1089 Double-Stranded Ribonuclease Coincided with Interferon: J. M. Meegan and P. I. Marcus

Inside AAAS

1092 AAAS Annual Elections: Preliminary Announcement

Book Reviews

1094 Patterns, Thinking, and Cognition, reviewed by L. Daston and G. Gigerenzer

 ■ Microbial Mats, K. H. Nealson
 ■ Astrophysics of Gaseous Nebulae and Active Galactic Nuclei, E. S. Phinney
 ■ Possums and Opossums, M. C. McKenna

Products & Materials

1098 Symbolic and Numerical Math Software ■ Enhanced pH Meter ■ Statistical Software ■ Supercritical Fluid Chromatograph ■ Modular Micro Gas Chromatograph ■ Microelectroeluter ■ Immunobiochemical Services ■ Scanning Tunneling Microscopy System ■ Literature

Board of Directors
Walter E. Massey
Retiring President, Chairman
Richard C. Atkinson
President
Donald N. Langenberg
President-elect
Mary Ellen Avery
Francisco J. Ayala
Floyd E. Bloom
Mary E. Clutter
Eugene H. Cota-Robles
Joseph G. Garrick, Jr.
John H. Gibbons
Beatrix A. Hamburg
William T. Golden
Treasurer
Richard S. Nicholson
Executive Officer

Editorial Board
Elizabeth E. Bailey
David Baltimore
William F. Brinkman
E. Margaret Burbidge
Philip E. Converse
Joseph L. Goldstein
Mary L. Good
F. Clark Howell
James D. Idol, Jr.
Leon J. Koss
Oliver E. Nelson
Helen M. Ranney
David M. Raup
Howard A. Schneiderman
Larry L. Smarr
Robert M. Solow
James D. Watson

Board of Reviewing Editors
John Abelson
Oais Al-Awadi
Don L. Anderson
Stephen J. Benkovic
Floyd E. Bloom
Henry R. Bourne
James J. Bull
Kathryn Calvin
Charles R. Cantor
Ralph J. Cicerone
John M. Coffin
Robert Dorfman
Bruce F. Eldridge
Paul T. Englund
Fredric S. Fay
Theodore H. Geballe
Roger I. M. Glass
Stephen P. Goff
Robert B. Goldberg
Corey S. Goodman
Jack Gorski
Stephen J. Gould
Richard M. Held
Gloria Heppner
Eric F. Johnson
Konrad B. Krauskopf
Charles S. Levings III
Richard Losick
Karl L. Magieby
Phippa Mareck
Joseph B. Martin
John C. McGill
Mortimer Mathkin
Carl O. Pabo

Roger A. Packer
Michael I. Posner
Dennis A. Powers
Russell Ross
James E. Rothman
Erol Ruooslah
Ronald H. Schwartz
Vernon L. Smith
Robert T. N. Tjian
Virginia Trimble
Emil R. Unanue
Gerard J. Vermeij
Bert Vogelstein
Harold Weintraub
Irving L. Weissman
George M. Whitesides
Owen N. Witte
William B. Wood

2 JUNE 1989

TABLE OF CONTENTS 1021
Teaching Statistics to Engineers

The competitive position of industry in the United States demands that we greatly increase the knowledge of statistics among our engineering graduates. Too many of today's manufacturers still rely on antiquated "quality control" methods, but economic survival in today's world of complex technology cannot be ensured without access to modern productivity tools, notably application of statistical methods. The Accreditation Board for Engineering and Technology (ABET) is now considering a proposal to make statistics an integral part of accredited undergraduate engineering programs. This proposal needs to be adopted.

Consider the molding process in which an integrated circuit chip is encapsulated in its familiar block of black plastic. The resin must cover the chip quickly, completely, and permanently, without disturbing the delicate wires that connect the circuit to the exterior metal "legs" which provide electrical contact. Success depends on a host of factors—temperature, pressure, mold design, material composition, viscosity, wire size, bonding method, and type of machine.

Each of these factors must be optimized to ensure quality results. But how does one find these optimum values? By experimenting with each one in isolation, critical interactions might be missed—raising the temperature might yield better results on one mold model but poor results on another, for example. On the other hand, attempting to vary each factor in all possible combinations could easily drive the number of experimental trials into the millions. No wonder that many traditional manufacturers still address only the obvious possibilities and hope for the best. Clearly, that kind of "best" is no longer good enough. Modern technology demands a far higher level of quality than a seat-of-the-pants approach can produce.

What is needed in this example, and thousands of others like it, is an application of methods from the area that statisticians call experimental design. A carefully selected number of experimental trials is carried out. In this selection, the factor combinations are chosen to allow estimation of the main effects of factors and those interactions judged to be critical by the engineer. Then sophisticated statistical methods are used to analyze the data. Such experiments require knowledge of statistics and engineering knowledge of the process at hand. It is no accident that today's leaders in quality manufacture encourage the use of statistically designed experiments at all stages of their processes—and see to it that their engineers have the training needed to succeed in these endeavors.

What training in statistics do today's U.S. engineering graduates receive? At present, most electrical engineers limit their studies of statistical variability to the stochastic processes involved in signal processing. Most others, such as civil, chemical, and mechanical engineers, can usually get one course in probability and statistics. Industrial engineers are typically given more, something between one and three semesters of course work. Despite some recent trends toward improvement, courses tend to emphasize the theory of statistics, in isolation, without relating it sufficiently to engineering processes.

Since Japan's universities have similar shortcomings, that country's employers routinely provide their engineers with substantial training in statistics. For example, one experimental design course taught by a Japanese professional organization lasts 30 days. In contrast, U.S. industry generally provides less than one-tenth as much training in experimental design and to only a small fraction of its engineers.

In most respects, the superior training of U.S. university graduates remains a key pillar of our economic strength. Unlike the Japanese, whose industries have adapted to shortcomings in their system of higher education by providing extensive on-the-job training, U.S. companies have normally been able to rely on university-based training for needed expertise. While the private sector must enhance its own training programs, it is clearly incumbent upon our engineering schools to adapt to evolving needs as quickly and effectively as possible. Change is never easy. Each addition necessarily displaces some other portion of the curriculum. Nevertheless, the adoption of the accreditation proposal by ABET would be an important step in ensuring the industrial future of the United States.

ARNO PENZIAS, Vice President for Research, AT&T Bell Laboratories, Murray Hill, NJ 07974