This Week in Science

Reliability of Electric Service

Biotechnology: Society's Role; M. W. Fox • ICBM Modernization: M. I. Sobel and H. Feiveson • EOS Meeting: G. A. Soffen • Rabies Vaccine Trials: W. Cheston • Mirror, Mirror . . . : S. J. Kohler and N. H. Kolodny; A. W. Flaherty

Berkeley's Changing Student Population • Concern in Washington
OTA to NASA: Accidents Will Happen
Wanted: $25 Million for Mouse House
Strasbourg Home for Frontiers
Why Won't NASA Talk to Scientists
Caution Urged on DNA Fingerprinting

Strange Bedfellows • Esoteric Borrowing from Physics
Another California Seismic Hot Spot
Exxon Bets on Bugs in Alaska Cleanup

Briefings: Byrd Reins in "Pork Barrel Lobbyist" • Cambridge Profs Piqued at Merit Pay • Statistics to Star on TV? • Congress Caps Grant Overhead Charge • Utah Keeps the Faith • CEQ Gets Director

Airline Deregulation and Public Policy: S. A. Morrison and C. Winston
Morphogenesis of the Polarized Epithelial Cell Phenotype: E. Rodriguez-Boulain and W. J. Nelson

Inhibition of DNA Binding Proteins by Oligonucleotide-Directed Triple Helix Formation: L. J. Maher III, B. Wold, P. B. Dervan

Origins and Movement of Fluids During Deformation and Metamorphism in the Canadian Cordillera: B. E. Nesbitt and K. Muehlenbachs
A Rotationally Resolved Fluorescence Excitation Spectrum of all-trans-1,4-Diphenyl-1,3-butadiene: J. F. Pfannstiel, B. B. Champagne, W. A. Majewski, D. F. Plusquellec, D. W. Pratt

Identification by ENDOR of Trp191 as the Free-Radical Site in Cytochrome c Peroxidase Compound ES: M. Sivaraja, D. B. Goodin, M. Smith, B. M. Hoffman

Specific Expression of Nuclear Proto-Oncogenes Before Entry into Meiotic Prophase of Spermatogenesis: H. Wolfes, K. Kogawa, C. F. Millette, G. M. Cooper

The MHC-Binding and gp120-Binding Functions of CD4 Are Separable: D. Lamarre, A. Ashkenazi, S. Fleury, D. H. Smith, R.-P. Sekaly, D. J. Capon

Neonatal Thymectomy Results in a Repertoire Enriched in T Cells Deleted in Adult Thymus: H. Smith, I.-M. Chen, R. Kubo, K. S. K. Tung

Light Adaptation in Cat Retinal Rods: T. Tamura, K. Nakatani, K.-W. Yau

Limbic Seizures Increase Neuronal Production of Messenger RNA for Nerve Growth Factor: C. M. Gall and P. J. Isackson

Neuronal Correlates of Subjective Visual Perception: N. K. Logothetis and J. D. Schall

The Papers of Thomas A. Edison, reviewed by: T. J. Misa ■ Darwin in Russian Thought, P. T. Grieg ■ The Physics of Solar Flares, E. Priest ■ Pions and Nuclei, D. S. Koltun ■ Books Received

Image Processing Software ■ Chromatography Data-Handling System ■ Multitasking Autotitrator ■ In Situ Hybridization Systems ■ Gene Screening by Image Analysis ■ Literature
Reliability of Electric Service

On 14 June, a particularly vicious storm hit the Washington, D.C., metropolitan area. It destroyed thousands of trees; many of them fell over electrical distribution lines. In the course of minutes about 150,000 customers lost electricity.

Such experiences stimulate questions about the reliability of the electrical system as a whole. Earlier there was excessive generating capacity. Generation of electric power in the period between 1980 and 1986 rose by 1.5% per year. Utility planning was adjusted accordingly. However, for 1987–88, the average yearly increase was 4.2%.* During the first half of this year consumption rose another 3%. Accordingly, questions are now being raised about adequacy of future reserves. The situation differs from region to region, but now in the north and middle Atlantic states reserves are on the low side. The intertie system connecting utilities in Pennsylvania, New Jersey, Maryland, and the District of Columbia already this summer has been forced to reduce voltage by 5% on four occasions.

A person who is accustomed to a proper response when flicking a switch is not likely to realize the complexities of reliable operation of an electrical system and the need to have reserves to cope with contingencies. Publications of the North American Electric Reliability Council (NERC) can give one a glimpse of some of the problems. For example, a Generation Availability Report 1983–1987 presents extensive data on the reliability of the more than 4000 electric generating units that represent 91% of the installed capacity of North America.

The NERC report presents detailed figures on outages of all types of plants. Data relevant to coal-fired plants in the 600- to 799-megawatt range illustrate where failures occur. Each plant on average sustained a total of 7.7 forced outages per year due to failures in the boiler. In addition, other systems of the plant accounted for more than 5.6 forced outages per year. Partial failures also led to reduced output. Beyond that, scheduled maintenance required cessation of generation. In all, the average equivalent outage time for boiler-related reasons was 1122 hours out of an annual 8640. Other components of the plant, including the steam turbines, generators, and pollution control equipment, caused further outages totaling about 800 hours. Thus the average plant of this type was available only 78% of the time. Similar figures were noted for other fossil fuel–fired installations.

About half of the outages due to the boiler system result from leaks in boiler tubing. A 600-MW boiler has about 100,000 meters of 6.35-centimeter diameter stainless steel tubing containing about 10,000 welds. Analysis has shown that failure of the tubing occurs for at least 22 reasons—most relate to extreme conditions present in a modern boiler. A 600-MW boiler consumes 10,000 tons of coal and the oxygen from 140,000 tons of air each day. In the center of the boiler, temperatures range up to 2000°C, and the average upward velocity of the gas stream and fly ash is nearly 100 kilometers per hour. Turbulent velocities may be much greater. Near the edges of the boiler, where the water-filled tubes are located, temperatures are as high as 1600°C. In the superheater, which is at the top of the boiler, the temperature of fluid within the tubes is 500°C or more. In some installations, the fluid pressure is 270 atmospheres. Pressure in the fire side of the boiler is slightly below atmospheric. If a tiny leak occurs in the tubing, the hot reactive H2O cuts a large hole leading to a forced outage. The tubing is also subject to hydrogen embrittlement from the inside. On the outside it is exposed to sulfur compounds, NOx, and at times to excess oxygen. Occasionally tubing may be exposed to a reducing environment that can also cause failure. Other factors leading to failure include erosion due to impact of fly ash, stress rupture, and fatigue due to vibration.

The NERC Generating Availability Data System pinpointed boiler tube failures as a major source of forced outages. This has led to a cooperative effort involving a number of utilities. They have used extensive data concerning tubing failures. Their efforts, coordinated by the Electric Power Research Institute, have resulted in a substantial decrease in forced outages. This precedent is likely to be followed by other cooperative efforts to reduce other types of outages and thus to increase the reliability of the electric system. Complexities, however, are such that progress will be slow.—PHILIP H. ABELSON